首页 > 人工智能 > 正文

想组建自己的数据科学团队?CEO们请先回答这几个问题

2016-04-14 14:35:25  来源:36大数据

摘要:随着时间的推移,你打造的数据科学团队的成员将有不同的技能组合、不同的背景和世界观,这时他们也将发挥越来越大的影响。
关键词: 大数据 CEO
第三个问题:何时应该开始组建数据科学团队?

 
  数据科学,首先需要足够多的数据才能开展下面的工作,而大部分公司一开始并没有足够多的数据的。
 
  在招聘数据科学主管或组建数据科学团队之前,要确保你有工作可以让他们可做。同时,你需要尽早开始搜集一些关键数据,一旦你准备好之后,数据科学团队就可以立刻施展身手、发挥作用。
 
  如果你还没有数据,这时谁负责决定该搜集什么样的数据、何时搜集数据呢?这个决策者并不一定需要是数据科学家,但最好是能了解不同数据集的潜力且能够做数据投资策略决策的人。如果你已经知道自己将会花很多的时间和金钱在数据的获取上,这时你或许就应该做一些少量的投入去招聘你的第一个数据科学家了。
 
  可能你现在立刻就需要数据,因为你的业务就是提供数据产品。然而你的最小可行性产品可能并不是数据驱动型产品。这时你只能将赌注压在你的直觉上,看你的直觉是否能为市场所验证。在这种情况下,过早地在数据获取和数据科学上进行投入只会浪费你宝贵的资金和时间,这些时间和金钱应该用在将最小可行性产品推向市场上。一旦你有可供数据科学家处理使用的数据后,同时也决心投入大量的产品、工程和业务资源来支持你的数据科学工作的话,这时,你就应该快速组建一支数据科学团队了。
 
  要在公司在灌输一种重视数据的文化,越早越好。从用户获取到产品发布再到收购,所有这些重要决策都应该基于数据而非大家的意见。将数据科学引入公司的另一个好处就是它能够让大家认识到数据是公司的一级资产。
 
  一次成功的产品发布应该是能否帮你搜集足够多的数据供学习的。如果让我们给出一个最重要的建议的话,那就是:在你验证了你的最小可行化产品(MVP)之后,这时你就应该考虑在数据科学上进行投入了。
 
  第四个问题:你应该将数据科学团队放在公司的什么位置上?
 
  你将数据科学团队放在公司里的什么位置上,这对团队以及整个公司的业务都会产生很大的营销。目前有三种方法:一个完全独立的数据科学团队,嵌入型团队,完全整合型的团队。每种方法其实都各有利弊。
 
  4.1让数据科学团队完全独立
 
  在数据科学团队完全独立情况下,这个团队和其它诸如工程团队是并列的。数据科学团队的负责人可能会想产品 / 工程副总裁、甚至是CEO直接汇报工作。
 
  这种独立模式的优势的它有充分的自主权。这种数据科学团队可以自主决定解决它认为最有价值的那些问题。作为一个完全独立的团队存在还有另外一个象征性的优势,就是它彰显了公司是将数据视为一级资产的,这有助于公司吸引更多顶尖的数据科学人才加入。
 
  这种独立的模式对于那些决策科学团队尤其有帮助。尽管基于数据决策的科学家是和产品团队紧密合作的,不过他们独立的身份可以帮助他们更好地做出艰难地决策,例如可以告诉产品经理他们的产品指标还不够好,所以暂时还不能发布。
 
  这种作为一支独立团队存在的模式的弊端就是它可能会面临被边缘化的风险。随着公司里产品团队规模慢慢扩大,他们经常倾向于一切都能自给自足。虽然他们可以从与数据科学家的合作中受益,但产品团队还是不希望依靠他们自己无法彻底掌控的资源。他们想一切都能依靠自己,为此,产品团队甚至会以招聘 “研究工程师” 的名义招聘自己的数据科学家,这样他们什么就可以掌控了。如果产品团队拒绝和独立的数据科学团队合作的话,那么数据科学团队就面临被边缘化的风险,无法发挥应有作用。这时很多优秀的数据科学家也将离你而去。
 
  LinkedIn最初的数据科学团队也是一个独立的团队,自主性让这个团队在LinkedIn的很多产品上都做出过关键性的贡献,从提升 “你可能认识的人” 的推荐质量到有效监测虚假账号等等。然而随着LinkedIn规模日益壮大,作为独立团队的数据科学团队与产品团队的有效协作变得越来越难,尤其是当产品团队后来自己招聘了具有和数据科学团队类似技能的工程师后更是如此。最终根据实际需要,LinkedIn决定不再将数据科学团队作为一个独立的团队。
 
  4.2让数据科学团队作为一个嵌入型团队
 
  在嵌入型模式下,数据科学团队将人招进来后,会将这些人派遣到公司不同部门和项目中去。这时虽然还有一个数据科学主管,但他 / 她充当的主要是招聘经理和指导员的角色。
 
  作为一种嵌入型团队,为了确保团队成员效用,它放弃了自主权。最好的情形是,数据科学家分别加入最需要他们技能的产品团队中,帮助解决公司内存在的一系列问题。
 
  这种嵌入型的团队模式当然也是有自己的弊端的。并不是所有数据科学家都愿意放弃自主权(事实上很多都不愿意放弃)。数据科学家的职位描述里非常看重创意和首创精神,然而作为一个嵌入角色,通常要求他们完全服从被嵌入团队的主管的领导。
 
  还有就是,作为嵌入团队成员,这会让数据科学家感觉自己是个 “二流公民”,被嵌入团队的领导会认为自己不应该对这些安插到自己团队中的数据科学家的职业发展负责,而数据科学团队主管也会认为这些人不直接归自己管理。我们发现很多公司采用的都是这种方式,其实只有当你的数据科学团队规模比较大时才适合采用这种方法。
 
  4.3完全整合型
 
  在完全整合型的模式里,已经没有单独的数据科学团队了。事实上,这时是由产品团队自己去招聘和管理自己需要的数据科学家。
 
  完全整合型有利于公司内部合作。让数据科学家成为产品团队里的 “一流人员” 解决了独立团队和嵌入型团队的一些弊端。这时,数据科学家、软件工程师、设计师和产品经理都围绕共同的产品目前通力协作,让大家更有团队意识,有效避免团队内部出现缝隙。
 
  然而完全整合型模式的弊端是它稀释了数据科学家的身份。每一个数据科学家都只能与所在的产品团队相关联,而没有一个集中式的数据科学团队。此外,这种模式没有嵌入型团队模式灵活,因为在完全整合型团队模式下,你更难根据每个数据科学家的兴趣和技能对他们进行灵活调动。最后,完全整合型的团队模式也给数据科学家的职业发展带来了挑战,因为每个数据科学家所在的团队的领导可能并不能客观地评估他们的价值或是奖励他们取得的成绩。
 
  在Instacart,数据科学家就是完全被整合进产品团队的。每一个产品团队都有自己的工程师、数据科学家、设计师和产品经理,工程师和数据科学家都向技术主管汇报工作,而技术主管自己可能并不是工程师或数据科学家。这个组织结构保证了工程师和数据科学家能够紧密合作,他们可能做任何有助于实现所在团队目标的工作。而作为数据科学副总裁,Jeremy主要为数据科学家和他们的团队领导提供指导。
 
  上面介绍的三种模式各有利弊,你必须确定哪种方法适合自己的公司情况,并且做好根据实际需要实时调整的准备。有时候最好的方法不是一个单一的模式,而是混合模式。
 
  
 
  (图中是 Daniel Tunkelang)
 
  第五个问题:如何打造一个尊重和重视数据科学的公司文化
 
  随时公司规模的不断壮大,你可能需要招聘越来越多的数据科学家。这里顺带推荐Jeremy的另一篇不错的文章:《怎样才能持续聘到优秀的数据人才?》。如果你能尽早在公司内部打造一个尊重和重视数据科学的文化,这将为公司后续发展带来诸多益处。
 
  很多公司声称自己是数据驱动的公司,他们搜集很多数据,在数据工程上也投入了很多钱,但最后还是功亏一篑。
 
  行动胜于雄辩,只有在一个真正基于数据做决策的公司里,数据科学才能真正发挥价值。
 
  你需要在公司内部建立这样的原则和可信度:即使是有悖于常识或是可能会造成公司内部的权利剧变,你依然会基于数据进行决策。只有这样,才能真正在公司里形成尊重数据科学的文化并让数据科学发挥最大的价值。
 
  和其他人一样,数据科学家也希望自己的工作被认可。只要做到尊重和重视数据科学,这就会形成一种良性的反馈循环,数据科学家将会更有动力攻克一些艰难的重大问题,同时确保他们的解决方案是可以衡量的。
 
  承认和认可数据科学家的贡献有时是非常困难的,尤其当他们被整合到其他团队中时更是如此,这就需要你的数据科学主管非常优秀而且有影响力,同时公司高层管理人员应该定期去了解和认识到数据科学家对公司业务做出的贡献。
 
  如果数据科学家不和产品经理、工程师和设计师紧密合作的话,他们是无法开发出卓越的产品的。如果主管领导不重视和欣赏他们的见解的话,数据科学家也将无法对产品产施展影响。
 
  在Jeremy刚开始加入Saithru担任数据主管的时候,公司内的整个工程师团队对数据科学是持一个非常中立的看法的。为了让大家重视数据科学,在前两个月,他将自己30%的时间都用在了给工程师团队设计和教授一门有关统计学习的课程。在这门课程上,他将的所有例子使用的都是Sailthru的数据,给大家讲述打造数据驱动产品的各种一处。这门课程很快改变了工程师团队对数据科学的看法。最后证明,Jeremy为了让大家认识到数据科学的重要性而花的大量时间是非常值得的。
 
  随着时间的推移,你打造的数据科学团队的成员将有不同的技能组合、不同的背景和世界观,这时他们也将发挥越来越大的影响。最后,为了让数据科学团队能更高效地工作,数据科学家必须要被团队成员、用户和公司决策者所信任。在组建团队的过程中,要招聘那些真正认同公司价值观的人,因为他们日后将给公司造成的影响是非常巨大的,或好或坏,他们做的决策可能会塑造公司的未来。

第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:pingxiaoli

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。