首页 > 人工智能 > 正文

AI进入“深水区”,算法是潜在偏见的最后解决方案?

2018-04-19 10:58:41  来源:人工智能观察

摘要:人工智能本来并不存在偏见,它不会因为无法通过逻辑来解释的理由而“想”某些东西是真的或假的。不幸的是,从创建算法到解释数据,机器学习中存在着人类的偏见,并且直到现在,几乎没有人试图解决这个严重的问题。
关键词: AI
\
  人工智能本来并不存在偏见,它不会因为无法通过逻辑来解释的理由而“想”某些东西是真的或假的。不幸的是,从创建算法到解释数据,机器学习中存在着人类的偏见,并且直到现在,几乎没有人试图解决这个严重的问题。

  本周二,外媒表示,由谷歌前首席技术官Varun Kacholia和Facebook前搜索引擎工程师Ashutosh Garg一起创立的AI公司,近日完成了2400万美元的融资,投资方为Lightspeed Ventures和Foundation Capital。

  这是一家旨在通过公开收集世界各地的劳动力的信息,解决雇佣、求职和晋升的信息鸿沟与招聘歧视问题的初创公司,依托于自主研发的软件收集处理招聘职位和应聘者的个人信息,人工智能系统的处理减轻了信息不对称的问题,匹配率比传统招聘的提高了八倍,同时还节约了90%的筛选成本。

  将大数据和算法自动化决策应用于劳动力的筛选上无可厚非,庞大的数据基础也可以提高决策的效率。但算法的结果一定没有偏差吗?对此,Gary表示:“人们在招聘过程中也存在偏见,这是因为个体获取的信息是有限的。而数据算法为招聘人员提供了充足的信息和洞见,弥补了招聘人员可能因不了解某些技能或公司而产生的误差,从而大幅增加合格候选人的数量。”

  按照该公司的说法,产品的筛选机制将消除任何潜在的人类偏见,使其完成符合平等就业机会委员会的规定,年龄、性别、种族、宗教、残疾等都不会成为算法的参考标准。消除人们固有的成见,使人事决策变得不那么“私人化”固然有可取之处,但前提是决策系统本身不受这些偏见的影响。对算法的监督和修正,必然成为算法运行的重中之重。

  其实,对于人工智能的偏见问题,在2017年的时候,一篇来自MIT Technology Review的文章就曾针对这一问题发表过相关评论。

  “在机器学习和人工智能发展的关键时刻,算法偏见正逐渐成为一个重大的社会问题。如果算法中潜在的偏见导致很重要的决策不被承认、不受控制,这可能会造成更严重的负面后果,尤其是对较贫穷的社区和少数群体。另外,最终的抗议可能会阻碍一项极其有用的技术的进步。”

  而算法专家凯文·斯拉文(Kevin Slavin)也曾在TED演讲中表示,算法“提炼自这个世界,来源于这个世界”,而现在则“开始塑造这个世界”。在算法“塑造世界”的时代,我们应该思考的是:该如何突破算法的瓶颈,赋予AI正向的价值。

  1

  算法其实并不客观


  在我们的认知里,算法最大的优势是能够根据用户的“数字自我”实现智能化、精准化推荐。换句话说,算法是人们在众多的信息中寻找自己所需材料的快速通道,这个过程的实现也是基于人们对算法的信任,即它具有“客观性”。

  不过,人们都忘了一点,AI算法及其决策程序是由开发者塑造的。开发者写入的代码,使用的训练数据以及对算法进行应力测试的过程,都会影响算法之后的选择。这就意味着开发者的价值观、偏见和人类缺陷都会反映在软件上。

  就像Facebook一直过不去的“剑桥分析丑闻”事件,利用先进的计算技术或者AI技术,试图通过人们的隐私数据来操纵选举,其实质,就是基本数据伦理的问题。每个公司都有属于自己的一套算法,因为他们都有不同的目的和价值观。获取信息时,我们觉得自己有权利去做选择,但实际上,所有的选项都是算法给出的既定选项。

  这么看来,算法并不客观。

  2

  在不客观中学会自救


  对算法的质疑从其诞生起就一直存在,这种质疑反映出了人类的科学理性。在对算法的设计提出继续完善的同时,学会自救也是必要的,换句话说我们要学会自我保护。

  就整体情况而言,算法的最大问题,在于其不透明性。对于这个复杂的领域,专业的技术人员至今也未能全部摸清楚,搞明白,更不用说普通人了。所以,在不确定其设计理念或者运行逻辑的情况下,我们要做的是明确“算法并不客观”的理念,时刻对其限制表示警惕。

  或许,这个时候,较为激进的思维模式更受欢迎,我们要学会提问,从提问中了解算法发生的作用以及其最初的设计目的。比如,用传统网页方式浏览新闻,尽量不依靠智能搜索,虽然不一定能成功,但是还是要学着用自己的逻辑对抗算法可能带来的信息窄化,从而不被算法限制。

  3

  如何减少人工智能的偏见


  至于如何减少人工智能的偏见,微软的研究员表示,最好的方式是从算法训练的数据开始审查,这是一种有效的方式。

  数据分布本身有一定的偏见性。还是以美国大选为例,开发者手中的美国公民数据分布并不均衡,本地居民的数据多于移民者,富人多于穷人,这都是可能出现的情况。而数据的不均衡可能会使AI对社会的组成得出错误的结论,比如仅仅通过机器学习算法分析,就得出“大多数美国人都是富有的白人”这个结论。

  同样的,也有研究表明,用于执法部门的AI 在检测新闻中出现的罪犯照片时,结果会偏向黑人和拉丁美洲裔居民。此外,训练数据中存在的偏见还有很多其他形式,只不过这些提到的更多一些。但是训练数据只是审查方式的一种,通过“应力测验”找出人类存在的偏见也同样重要。

  其实要让AI变得没有偏见,我们就要勇于去揭开算法的“黑箱”。快手CEO宿华曾说,如果没有很好的对社会的认知、对人文的思考,仅靠技术本身会很容易走偏,要用哲学的智慧将算法、技术力量放大,从而避免表达幸福感的种种障碍。现在,我们要做的就是尽最大的努力去避免这些事情的发生。
第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:zhangxuefeng

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。