首页 > 人工智能 > 正文

人工智能在混合式教学中的应用

2018-05-16 10:50:45  来源:企业网D1Net

摘要:人工智能的研究领域包括专家系统、自然语言理解、机器学习、情感识别、人工神经网络等众多领域,相关的教学应用涵盖众广,在此主要对面向教师、面向学生和面向教学的人工智能教学典型应用进行探讨。
关键词: 人工智能
  人工智能的研究领域包括专家系统、自然语言理解、机器学习、情感识别、人工神经网络等众多领域,相关的教学应用涵盖众广,在此主要对面向教师、面向学生和面向教学的人工智能教学典型应用进行探讨。

  面向教师的人工智能应用

  智能评测

  智能评测是指通过对学习者学习过程和学习行为数据进行大规模自主智能评估,并进行个性化即时反馈。其中,大规模评估是指通过人工智能大数据分析技术对学生的学习行为和学习成果进行针对性地评测;个性化即时反馈是指通过对某位或某一群体学生的学习行为和学习过程数据进行分析后给予反馈。当前,基于人工智能技术的智能评测应用主要有口语考官和试卷批改机器人等。

  众所周知,每年都有各种类型的英语听说考试,考试者的录音如果都由人工去评分,不仅工作量巨大,而且评判标准很难一直保持统一。随着语音识别准确率的不断提升,使得借助人工智能口语考官来对英语听说考试进行评分成为现实。只需抽取样本数据进行训练,人工智能口语考官便能学会像人类考官一样对学生的回答进行评估。美国教育考试服务中心已经在一些英语考试中采用人工智能技术来评测打分。科大讯飞公司的语音技术也在2015年应用于广东70万高考英语口语环节考生答卷的批阅。

  人工智能口语考官不仅能进行语音评分,还能纠错,对平翘舌音、前后鼻音都能进行精准分辨。基于人工智能的评分不仅更快,而且更准和更公正。我国的“英语流利说APP”就是一款能指出用户发音错误和自动打分的移动端APP应用,深受英语学习者的喜爱。

  评卷对每位教师而言并不陌生,但人工阅卷通常容易受主观因素影响而导致结果偏差,机器阅卷应运而生。国内的阿里AI智能阅卷、科大讯飞智能评卷系统等应用的推广,开启了以机器评阅为主、人工审核为辅的全新评阅方式。国外的Gradescope公司开发的批改卷面试题软件,解决了给试题打分的耗时问题,伯克利大学、斯坦福大学、麻省理工学院等高校已经加入该应用的使用行列。02

  智能应答

  智能应答是基于自然语言处理、知识推理、文本语音和图像分析等技术而实现的大规模知识处理与反馈的自动应答系统,它主要从语义理解和答案搜索方面解答学习者的疑问。如:微软小冰聊天机器人、百度智能问答机器人,它们在接收到文字、图像或语音信息后,先进行内容解读,然后再自动给予合适的回复。

  在混合式教学中,学习者通过线上和线下完成学习及师生互动交流,针对学习者发出的文本、语音和图像,以深度学习、机器学习、神经网络等技术为基础的人工智能教学应答机器人正好能大显身手。例如,能力风暴教育机器人已推广到4万多家学校;海尔小帅智能机器人,能与小朋友进行语音交互,回答小朋友的问题。03

  个性化教学

  根据学生的个性特征,进行教学资源的个性化智能推荐与因材施教一直是教育界所期望看到的理想教育方式,然而具体实施起来却困难重重。个性化推荐就是根据学习者的学习行为,自动预测学习者的兴趣偏好,有针对性地向学习者推送合适的教学资源。为此,大量基于学习行为数据建模的各种推荐算法纷纷被应用,如关联规则算法、蚁群聚类算法、协同顾虑算法、机器学习算法等。其中基于人工智能的深度学习推荐算法最受关注。

  深度学习的思想来自于机器学习,是指初始数据获得之后,对数据做预处理、特征提取与选择,再到推理,最后进行预测的过程。在混合式教学中,根据学习者网上浏览文本、语音、图像、视频等资源的行为数据,进行特征提取并基于人工智能的深度学习推荐算法,可以为学习者提供学习资源的智能推荐。例如,爱奇艺视频网、网易云课堂,以及优必选联合腾讯叮当推出的个性化智能教育机器人等,它们均能根据用户的浏览行为给用户智能推荐相关的课程资源。面向学生的人工智能应用

  智能识别

  智能识别在人工智能教学中属于应用最早也是最为成功的技术,无论是语音识别、图像识别、人脸识别,还是脑波识别,都属于智能识别范畴。由于人的语音天生就蕴藏着情感,因而基于语音情感库的情感识别在教学中也被广泛应用。

  我国2015年成立的“管理科学与工程学会神经管理与神经工程研究会”,标志着我国的神经管理与神经工程研究进入新的阶段。越来越多的机构和学者投入到基于脑神经认知的情感识别研究中。例如,浙江大学管理学院神经管理学实验室对脑信号的感知与情感评估分析技术进行了大量研究;复旦大学管理学院戴伟辉教授研究了面向教育大数据分析的神经管理学机制;软银情感识别智能机器人Pepper、小影印象 APP应用等,都能根据人的表情、语音来识别人的情绪。若将这些技术应用到混合式教学中,则有利于教师识别出学习者的状态,对讲课内容、授课方式进行及时调整,从而获得更好的教学效果。02

  智能导学

  以往“题海战术”是学习者最常选择的学习方式,然而盲目学习的结果往往是浪费时间,事倍功半。当混合式学习者面对海量的互联网学习资源不知所措时,智能导学无疑是帮助学习者提升学习效率的重要手段。智能导学的总体思路是对学科领域知识体系先做分解,形成一个个知识元,然后通过导学关键点进行语义定义,再将上述定义好的知识元进行归纳与整理,形成体系,并得到相应的逻辑知识地图,进而形成个性化学习路径。

  在人工智能大数据分析的帮助下,教师和管理者可以对混合式学习者的学习行为和知识量进行全面扫描评估,找到学习者的薄弱项,进行自适应学习路径设计,让其能针对性地开展学习,减少重复学习的时间,提高效率。智能导学的关键是对学习者进行画像和适应性指导。智能导学在混合式教学中的应用如下:

  学习路径智能化引导。当学习者首次进入系统学习新知识点时,系统会首先判定学习者的知识量,即通过调用已建立的领域知识判定模型,对当前知识点的前驱知识点和后续知识点进行扫描。在学习过程中,通过与系统交互的情况来检测学习者对前驱知识点的掌握程度,如果未达要求则引导至前驱知识点继续进行学习。学习者每完成一个知识点的学习,都要接受测试,只有通过了测试,才能认为掌握了该知识点。

  薄弱环节自行检测。在混合式学习中,学习者可对薄弱环节知识点进行自我检测,对于那些没有掌握好的知识点,可以进行多次学习,并与以往学习情况进行对比。在此过程中人工智能学习系统可以查询该领域知识库的相关内容,并对薄弱环节进行补强。

  学习进度有效控制。学习者在开始学习之前要制定自己的学习计划,详细列出课程内容学习计划,一旦出现偏差或者未按照原定计划执行时,系统就会给予提醒,并且定期对计划进行检查。在完成一定时段的学习后,系统会将学习者的学习状况进行统计,列出这段时间内的知识难点以及尚未完全掌握的知识点,并对后续学习计划进行审查,看是否需要调整今后的学习计划。面向教学的人工智能应用

  智慧课堂

  从信息化视角来看,智慧课堂可看作是利用先进的信息技术手段来营造智能化的课堂教学环境,形成师生交流立体化、教学过程智能化的课堂。大数据、物联网、云计算、可穿戴设备等技术的发展成熟,数字化学习环境与教育的深度融合,使得教学中各类数据的收集、追踪、分析成为可能,为智慧课堂的建成奠定了坚实的基础。

  近年来,越来越多的教学机构参与到智慧课堂建设中来。例如,依托上海开放大学的上海开放远程教育工程技术研究中心所建的“智慧课堂”,配备有虚拟现实(VR)和增强现实(AR)设备、人体眼神姿态识别仪、EEG/ERP脑波检测器等数字化设备,能将学习者课堂上的面部表情、身体姿态和脑电波等数据信息全程捕捉下来。

  智慧课堂构建图

  由于人的兴奋、紧张、愉悦等状态通过脸部表情、身体姿态和脑电波能够反映出来,因此对每位学习者脸部表情进行相应的历史对照分析,并结合脑波检测,便能较准确地识别出学习者的状态,分析出学生的注意力是否集中,以及对知识点的掌握程度。然而由于学习过程中的脸部表情、脑电波数据所呈现出的复杂、非线性、数据量大、干扰性大等特性,常用的数据分析方法识别效果不佳,而基于机器学习、深度学习的人工智能识别技术能有效处理上述特性,使得智慧课堂成为学习者进行个性化学习的重要场所。02

  智能在线考试

  基于人工智能的在线考试系统除具有常见的用户信息管理、试题库管理、在线考试、自动评卷功能外,还提供了智能组卷功能和在线作弊防范监测功能,不仅能自动生成区分度良好的试卷,而且还能对作弊试卷、雷同试卷进行辨别。此外,智能在线考试系统还能对每次考试结果生成考试分析报告,对考试结果进行精准分析,以及对考试难易程度做出评判。

  智能在线考试系统的另一特色是具备数据挖掘统计功能,即能对每一场考试产生的数据进行挖掘与统计,并给出描述性统计值,如每场考试最早完成答卷的时间、平均答卷时间、最长答卷时间、答题者的最高分、平均分、最低分等信息,以及对试卷的难易程度给出评判,并以图表的形式直观展示,便于师生迅速了解该次考试的情况。此外,智能在线考试系统还能对考试数据执行分类、聚类、关联规则分析等操作,通过数据挖掘方法来寻找知识点、试题间的潜在关联,为在线考试更好地服务。

  从混合式教学的特征、现状与需求来看,人工智能在上述教学中的发展与应用呈现以下规律:人工智能技术将不断应用于解决混合式教学中存在的问题,并为教学的创新发展提供更具智能化的模式与手段。与此同时,混合式教学中的应用新需求将为人工智能在上述专业领域的发展不断提供新的动力,由此促进人工智能的进一步发展。因此,我们应该在人工智能发展与混合式教学应用需求之间构建深度融合的生态链,形成可持续创新、双螺旋演进的互动发展模式。
第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:zhangxuefeng

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。