首页 > 人工智能 > 正文

人工智能入门,怎么选择脚踏实地的工作岗位?

2018-07-10 11:27:02  来源:51CTO

摘要:人工智能,已经跌入到两三年前大数据风口上,全民皆“数据科学家”的套路里了。
关键词: 人工智能
\
  人工智能,已经跌入到两三年前大数据风口上,全民皆“数据科学家”的套路里了。

  到底做什么,算是入行AI?

  这个话题其实在笔者之前的几个chat里面已经反复提到过了,在此再说一遍:工业界直接应用AI技术的人员,大致可以分为三个不同角色:算法、工程,和数据。

  现在各种媒体上,包括 GitChat 中有大量的文章教大家怎么入行AI,怎么成为具体某个领域的工程师,告诉大家要在某领域内发展需要掌握的技术栈是什么,等等……

  我们不说怎么能够成为XXX,我们先来看看成为XXX之后要做什么事情,而做这些事情,需要什么样的能力,在拥有了这些能力、做上了这件事情之后,又能向什么方向发展。

  换言之,本文中,我们将从直观的角度,管窥承担不同角色工作所需要具备的素质,日常工作的状态,和职业发展路径。

  做算法

  1.1 日常工作


  所有人都想做算法,那么,说到底,在工业界做算法倒是干什么?

  真正的算法工程师(也有公司叫科学家),最基本的日常工作其实是:读论文&实现之——确认最新论文中的阐述是否真实可重现,进一步确认是否可应用于本企业的产品,进而将其应用到实践中提升产品质量。

  1.2 必备能力

  既然日常工作首先是读别人论文。那么,必不可少,作为算法工程师得具备快速、大量阅读英语论文的能力。

  有一个网站,所有有志于算法的同学必须要知道:https://arxiv.org ——这里有多个学科(包括computer science)大量的最新论文。

  现在许多科学家、学者、研究人员和博士生在论文刚刚完成,尚未在正式期刊会议上发表时就先将论文发布在此处,为的是在尽量短的时间延误下对外传播自己的成果。

  传统的正规渠道,从论文完成到正式发表之间存在短则三四个月,长则一年半载的延迟。这对一些传统学科,还勉强可以接受。

  但计算机科学,尤其是人工智能、机器学习、深度学习这几个当今世界最热门的主题,大家都在争分夺秒地抢占制高点,几个月的耽搁根本不能容忍。

  因此,对于AI的学术性文献而言,arxiv.org 实际上已经成为了当前的集大成之地。

  如果要做算法,平均而言,大致要保持每周读一篇最新论文的频率。

  也许这就是为什么,到目前为止,笔者所听闻和见过的算法工程师都是名校相关专业博士的原因。

  经过几年强化学术研究训练,这些博士们,就算英语综合水平不过 CET-4,也能读得进去一篇篇硬骨头似的英语论文!

  1.3 自测“算法力”

  但当然不能说硕士、学士或者其他专业的有志之士就做不成算法了。人都不是生而知之,不会可以学嘛。

  但是到底能不能学会,其实也并不需要三年五载的时间,花费几万十几万金钱在各种培训或者付费阅读上才能够知道。

  有个很简单的验证方法:现在就去https://arxiv.org找一篇论文(比如这篇:Dynamic Routing Between Capsules),从头到尾读一遍。

  现在不懂没关系,至少先试试在不懂的情况下能不能把它从头到尾一字不漏的读完,有不认识的字查字典。

  如果这都做不到,还是当机立断和“算法”分手吧。既然注定无缘,何必一味纠缠?

  1.4 学术实践能力

  如果,碰巧你喜欢读论文,或者就算不喜欢也有足够强大的意志力、专注力压迫自己去强行阅读论文。那么恭喜你,你已经跨上了通往算法山门的第一级台阶。

  下面一级是:读懂论文。

  既然要读论文,读最新论文,而且阅读的目的是指导实践,那么自然要读懂。拿起一篇论文就达到懂的程度,至少需要下面这三种能力:

  1.4.1 回溯学习能力

  一篇论文拿来一看,一大堆名词术语不懂,它们互相之间是什么关系也不知道。怎么办?去读参考文献,去网上搜索,去书籍中查找……总之,动用一切资源和手段,搞清不明概念的含义和联系。

  这种能力是学术研究的最基础能力之一,一般而言,有学术背景的人这一点不在话下。

  如果现在没有,也可以去主动培养,那么可能首先需要学习一下学术研究方法论。

  1.4.2 数学能力

  如果只是本着学习的目的读经典老论文,那么只要清楚文中图表含义,看公式推导明白一头一尾(最开始公式成立的物理意义,以及结束推导后最终形式所具备的基本性质)也就可以了。

  但读最新论文就不同。因其新,必然未经时光检验,因此也就没人预先替你验证的它的正确性。

  在这种情况下,看公式就得看看推导了。否则,外一是数学推导有错,导致了过于喜人的结果,却无法在实践中重现,岂不空耗时力?

  如果目前数学能力不够,当然也可以学。但就与后面要说的做工程用到什么学什么的碎片化学习不同,做算法,需要系统学习数学。

  微积分、线性代数、概率统计,是无法回避的。如果在这方面有所缺乏,那还是先从计算机系的本科数学课开始吧,个人推荐北师大教材。

  做工程

  2.1 日常工作


  相对于算法的创新和尖端,做工程要平实得多。

  这一角色比较有代表性的一种岗位就是:机器学习工程师(或戏称调参工程师)——他们使用别人开发的框架和工具,运行已有算法,训练业务数据,获得工作模型。

  其间可能需要一些处理数据、选取特征或者调节参数的手段,不过一般都有据可循,并不需要自己去发明一个XXXX。

  做工程也得读论文,不过和做算法不同,做工程读论文的一般目的不是尝试最新方法,而是用已知有效的方法来解决实际问题。

  这就导致了,做工程的,读的经常是“旧”论文,或者相对学术含量低一些(不那么硬)的论文。

  而且在阅读时,主要是为了直接找到某个问题的处理方法,因此,可以跳读。

  对于其中的数学公式,能够读懂头尾也就可以了。论文阅读频率和学术深度的要求,都比做算法低得多。

  当然,既然是有领域的程序员,在专业上达到一定深度也是必要的。

  虽然做工程一般要使用现成技术框架,但并不是说,直接把算法当黑盒用就可以做一名合格的“调参”工程师了。

  把算法当黑盒用的问题在于:黑盒能够解决问题的时候,使用方便,而一旦不能解决问题,或者对质量有所要求,就会感觉无所适从。

  做工程,「机器学习」学到多深够用

  当然,既然是有领域的程序员,在专业上达到一定深度也是必要的。

  虽然做工程一般要使用现成技术框架,但并不是说,直接把算法当黑盒用就可以做一名合格的“调参”工程师了。

  把算法当黑盒用的问题在于:黑盒能够解决问题的时候,使用方便,而一旦不能解决问题,或者对质量有所要求,就会感觉无所适从。

  做数据

  此处说得做数据并非数据的清洗和处理——大家可以看到做工程的岗位,有一部分工作内容就是 ETL 和处理数据。此处说的做数据是指数据标注。

  3.1 标注数据的重要性

  虽然机器学习中有无监督学习,但在实践领域被证明有直接作用的,基本上还都是有监督模型。

  近年来,深度学习在很多应用上取得了巨大的成功,而深度学习的成功,无论是图像、语音、NLP、自动翻译还是AlphaGo,恰恰依赖于海量的标注数据。

  无论是做ML还是DL的工程师(算法&工程),后者有甚,都共同确认一个事实:现阶段而言,数据远比算法重要。

  3.2 数据人工标注的必要性

  数据标注的日常工作

  简单说:数据标注的日常工作就是给各种各样的数据(文本、图像、视频、音频等)打上标签。

  【好消息】:数据标注工作几乎没有门槛。一般任何专业的大学毕业生,甚至更低学历,都能够胜任。上手不需要机器学习之类的专业知识。

  【坏消息】:这样一份工作,是纯粹的“脏活累活”,一点都不cool,起薪也很低。

  打个不太恰当的比喻:

  做算法是屠龙,仗剑江湖,天外飞仙;

  做工程是狩猎,跃马奔腾,纵酒狂歌;

  做数据是养猪,每天拌猪食清猪粪,一脸土一身泥。

  所以,虽然这是一件谁都能干的工作,但是恐怕,没几个人想干。

  认清形势,脚踏实地

  近来一段时间,能明显感到,想入行AI的人越来越多,而且增幅越来越大。

  为什么这么多人想入行AI呢?真的是对计算机科学研究或者扩展人类智能抱着无限的热忱吗?说白了,大多数人是为了高薪。

  人们为了获得更高的回报而做出选择、努力工作,原本是非常正当的事情。关键在于,找对路径。

  寻求入行的人虽多,能真的认清市场当前的需求,了解不同层次人才定位,并结合自己实际寻找一条可行之路的人太少。

  人人都想“做算法”,却不想想:大公司里的研究院养着一群高端科学家,有得是读了十几二十年论文始终站在AI潮头的资深研究人员。

  下面分享,ShuffleNet算法详解

  算法详解:

  ShuffleNet是Face++的一篇关于降低深度网络计算量的论文,号称是可以在移动设备上运行的深度网络。这篇文章可以和MobileNet、Xception和ResNeXt结合来看,因为有类似的思想。卷积的group操作从AlexNet就已经有了,当时主要是解决模型在双GPU上的训练。ResNeXt借鉴了这种group操作改进了原本的ResNet。MobileNet则是采用了depthwise separable convolution代替传统的卷积操作,在几乎不影响准确率的前提下大大降低计算量,具体可以参考MobileNets-深度学习模型的加速。Xception主要也是采用depthwise separable convolution改进Inception v3的结构。

  该文章主要采用channel shuffle、pointwise group convolutions和depthwise separable convolution来修改原来的ResNet单元,接下来依次讲解。

  channel shuffle的思想可以看下面的Figure 1。这就要先从group操作说起,一般卷积操作中比如输入feature map的数量是N,该卷积层的filter数量是M,那么M个filter中的每一个filter都要和N个feature map的某个区域做卷积,然后相加作为一个卷积的结果。假设你引入group操作,设group为g,那么N个输入feature map就被分成g个group,M个filter就被分成g个group,然后在做卷积操作的时候,第一个group的M/g个filter中的每一个都和第一个group的N/g个输入feature map做卷积得到结果,第二个group同理,直到最后一个group,如Figure1(a)。不同的颜色代表不同的group,图中有三个group。这种操作可以大大减少计算量,因为你每个filter不再是和输入的全部feature map做卷积,而是和一个group的feature map做卷积。但是如果多个group操作叠加在一起,如Figure1(a)的两个卷积层都有group操作,显然就会产生边界效应,什么意思呢?就是某个输出channel仅仅来自输入channel的一小部分。这样肯定是不行的的,学出来的特征会非常局限。于是就有了channel shuffle来解决这个问题,先看Figure1(b),在进行GConv2之前,对其输入feature map做一个分配,也就是每个group分成几个subgroup,然后将不同group的subgroup作为GConv2的一个group的输入,使得GConv2的每一个group都能卷积输入的所有group的feature map,这和Figure1(c)的channel shuffle的思想是一样的。

  pointwise group convolutions,其实就是带group的卷积核为1*1的卷积,也就是说pointwise convolution是卷积核为1*1的卷积。在ResNeXt中主要是对3*3的卷积做group操作,但是在ShuffleNet中,作者是对1*1的卷积做group的操作,因为作者认为1*1的卷积操作的计算量不可忽视。可以看Figure2(b)中的第一个1*1卷积是GConv,表示group convolution。Figure2(a)是ResNet中的bottleneck unit,不过将原来的3*3 Conv改成3*3 DWConv,作者的ShuffleNet主要也是在这基础上做改动。首先用带group的1*1卷积代替原来的1*1卷积,同时跟一个channel shuffle操作,这个前面也介绍过了。然后是3*3 DWConv表示depthwise separable convolution。depthwise separable convolution可以参考MobileNet,下面贴出depthwise separable convolution的示意图。Figure2(c)添加了一个Average pooling和设置了stride=2,另外原来Resnet最后是一个Add操作,也就是元素值相加,而在(c)中是采用concat的操作,也就是按channel合并,类似googleNet的Inception操作。

  下图就是depthwise separable convolution的示意图,其实就是将传统的卷积操作分成两步,假设原来是3*3的卷积,那么depthwise separable convolution就是先用M个3*3卷积核一对一卷积输入的M个feature map,不求和,生成M个结果,然后用N个1*1的卷积核正常卷积前面生成的M个结果,求和,最后得到N个结果。具体可以看另一篇博文:MobileNets-深度学习模型的加速。

  Table 1是ShuffleNet的结构表,基本上和ResNet是一样的,也是分成几个stage(ResNet中有4个stage,这里只有3个),然后在每个stage中用ShuffleNet unit代替原来的Residual block,这也就是ShuffleNet算法的核心。这个表是在限定complexity的情况下,通过改变group(g)的数量来改变output channel的数量,更多的output channel一般而言可以提取更多的特征。

  实验结果:

  Table2表示不同大小的ShuffleNet在不同group数量情况下的分类准确率比较。ShuffleNet s*表示将ShuffleNet 1*的filter个数变成s倍。arch2表示将原来网络结构中的Stage3的两个uint移除,同时在保持复杂度的前提下widen each feature map。Table2的一个重要结论是group个数的线性增长并不会带来分类准确率的线性增长。但是发现ShuffleNet对于小的网络效果更明显,因为一般小的网络的channel个数都不多,在限定计算资源的前提下,ShuffleNet可以使用更多的feature map。

  Table3表示channel shuffle的重要性。

  Table4是几个流行的分类网络的分类准确率对比。Table5是ShuffleNet和MobileNet的对比,效果还可以。

  总结:

  ShuffleNet的核心就是用pointwise group convolution,channel shuffle和depthwise separable convolution代替ResNet block的相应层构成了ShuffleNet uint,达到了减少计算量和提高准确率的目的。channel shuffle解决了多个group convolution叠加出现的边界效应,pointwise group convolution和depthwise separable convolution主要减少了计算量。
第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:zhangxuefeng

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。