组建一个出色的数据团队都需要哪些角色?Google 的首席决策工程师 Cassie Kozyrkov 在这一问题上有自己独到的见解。在她看来,一个好的 AI 和数据科学团队需要 10 种不同的角色。无论你是公司的管理者、招聘者,还是想在数据科学领域工作的求职者,都可以在这篇文章中找到对自己有用的信息。? ?
Google 的 Geoffrey Hinton 是我的偶像,也是深度学习领域的开山鼻祖,但我不希望一个团队中有10个 Geoffrey Hinton 这样的成员而没有其他角色。
应用数据科学是高度跨学科的领域,依赖于整个团队的共同协作,多角度的观点尤为重要。事实上,观点和态度的重要性仅次于教育和经验。
如果你想要通过智能的工程决策方法使数据变得有用,并且希望从事相关的职业,那么下面我对团队发展中的角色顺序(从0开始)提出的看法或许对你会有帮助。
0.数据工程师
在数据分析之前,你要获取所需的数据。如果你需要处理的是小型数据集,那么数据工程实际上就是在电子表格中输入一些数字。但当你需要处理大规模数据时,数据工程本身就成为了一门复杂的学科。就需要团队中有一个人来专门负责处理棘手的工程问题,以便团队中其他人基于此协同工作。
1.决策者
在你想聘请一位博士毕业的数据科学家前,其实更需要拥有一位了解数据驱动决策的科学决策者。?
他主要负责决定哪些问题可以用数据来解决,进行初步规划,并从商业角度来确定所需的分析级别。一位深思熟虑的人,他不会一直说,“哦,哎呀,我在思考这个决定时甚至都没有想到这种状况。” 作为决策者要考虑周到,思考所有可能的情况并作出决策。
2.分析师
数据分析师是你下一个需要考虑的角色。他有能力查看数据、了解数据结构并从中获得灵感,唯一的不足是他可能对这项工作中需要使用的软件并不熟悉。如果你看过数码照片,那么你已经接触过数据可视化及分析了。
学习使用 R 和 Python 等工具只是对 MS Paint 进行数据可视化的升级;它们是用来查看多类别数据集的一种多功能可视化工具,而不仅仅是 RGB 像素矩阵。
分析师可以利用饭后时间多观察数据,从中找到些灵感,肯定比不做这些要好。如果整个团队的成员都这么做的话,那么你一定可以比其它不这样做的团队更能把握行业的命脉。
Nessie 1934:这是数据,请明智地给出结论。
有一点非常重要,作为一名数据分析师,所做出的任何结论都不能脱离数据。这是一种需要专业训练的技能,就如上面的照片一样,你可以说:“这就是我的数据所要展示的内容。”但不要因此给出结论,如“尼斯湖水怪真的存在”这样的言论。
3.专业分析师
这是一个节奏很快的角色。胜任这份工作的人要能够更快速地查看更多数据。快速处理数据,并善于探索发现有趣的东西是这类人才所需的技能!同时,这一角色不需要给出小心严谨的意见,而是帮助团队尽可能多地关注数据本身,以便让决策者了解真正值得关注的因素。
这可能与我们的直觉想法不同,但不要把这样的工作交给你最信任的,那些很会写代码的工程师去做。我们需要的不仅是能够快速工作的人才,还尽可能快地发现数据背后潜在的信息,而对于那些乐于编程的工程师来说,观察数据可能是比较难的,因此也就很难胜任这份角色的工作。
我曾见过一名分析师被工程文化浓厚的团队欺负,因为团队成员显然没有意识到所谓“优秀代码”很难用描述性分析进行解释。正是如此,这里的“优秀”指的是“高效和谦虚”。如果一个高效但粗心的程序员无法融入团队,他们自然会离开,而这也证明了自己对业务反应敏捷。
4.统计学家
现在,我们已经找到帮助我们分析数据的员工了,而统计学家能够协助决策者在分析数据后得到严谨、有依据的结论。
我们最好还是控制一下这种"喂数据"的疯狂。如果你能克制住学习真实情况之外的冲动的话,那么看“Nessie”这张图没问题。但是你会克制住吗?尽管人类非常擅长于合理分析图片,但其他数据类型似乎无法用常理解释。所以,统计学家的出现可能有助于团队在分析数据后得到严谨、有据的结论。
例如,如果你的机器学习系统正在一个数据集上工作,那么所有你能得出的结论都是基于该数据集的。换句话说,你的系统在该数据集上是起作用的,但它在生产过程中也一定会起作用吗?你能得出这个结论吗?这时候你就需要一些额外的技能来处理这些问题,统计方面的知识或许能帮到你。
灵感是很便宜,但严谨的态度是昂贵的。很多时候我们可以用纯粹的灵感来满足自己。
在你需要认真做出一个决定之前,如果还没有完全地认识到事实真相的话,那么请放慢速度,谨慎思考。
5.应用型机器学习工程师
对于一个应用型的 AI /机器学习工程师来说,最好的品质并不是知晓算法如何工作。工程师的日常工作是使用这种算法,而不是构建它们 (这是研究人员所做的事)。我们需要的是那些拥有与现有算法匹配的编程能力,并应用于数据集的工程能力。
除了需要快速编程的能力,这类工程师还需要具备能应对失败的品质。你可能永远不会知道你正在做什么,即使你的意识里觉得自己正在做。通过算法尽可能快地运行数据,并查看算法是否能够正常工作......在这过程中你可能会经历远多于成功的失败过程。这类工作很大一部分需要工程师去不断地尝试,因此你需要不断应对失败的过程;同时,具备从容应对失败的能力,将让你更好地胜任这份工作。??
由于日常所碰到的业务问题是无法在教科书中找到,因此你事先也无法知道什么算法会起作用,你也不能期望在第一时间获得完美的结果。你只能尽可能快地尝试很多方法,并不断迭代以找到最好的解决方案。
谈到“针对什么数据用什么算法”这个问题,对于分析师而言,他们会认为这些输入很有意思。这也不难理解为什么要先有数据分析师了。
虽然在问题解决过程会碰到很多磕磕绊绊,但机器学习工程师必须要严谨地深入方法评估这个至关重要的部分。得到的解决方案是否真的适用于新数据呢?幸运的是,你在之前已经有了一个明智的决定,现在需要做的是将这个接力棒传给统计学家。
此外,最强的应用型 ML 工程师要非常清楚应用不同方法所需要的时间。
6.数据科学家
在这里,我所说的数据科学家,是具备前面提到的三个角色技能的全面专家。不是每个人都使用我这里的定义,也有具备三选一的专家能力时也自称自己是“数据科学家”,在这里需要注意区分一下。
在数据科学团队中,我将这个角色排在第6位,因为能够聘请到一个真正集三者技能于一身的数据科学家,是一个昂贵的选择。如果你有足够的预算,那么这是一个不错的选择。但如果没有充裕的经费,可以考虑培养现在具备单一技能的专家。
7.分析经理/数据科学领导
分析经理是一个是数据科学家和决策者的混合体角色。他们在团队中的角色是凝聚整个团队的力量,以确保团队中的人员不会分崩瓦解,而不是为日常业务增加价值。这是一个非常少见、也非常难雇佣的角色。
每天他都需要保持清醒的头脑,思考诸如“如何设计问题更合理? 如何做决策?如何最好地分配我们的专家?什么值得做?技能和数据是否符合要求?如何确保输入数据的质量?”等问题。
如果你能够聘请到一位这样的分析经理,那么恭喜你和你的团队,你们很幸运,请尽可能地留住这样的人才,永远不要让他离去。
8.定性专家/社会科学家
有时候,你的决策者是一名优秀杰出的领导者,经理人,激励者,影响者或导航者......但他们在做决策时可能并不具备艺术性和科学性。做决策不仅仅需要天分。如果你的决策者在这方面没有很扎实的能力,那么他们带来的损害可能多与收益。
请不要解雇一个技能不够纯熟的决策者,你可以通过专家定性帮助他们提升自身技能。
这类人通常具有社会科学和数据科学的背景,如行为经济学家,神经经济学家和接受过专业培训的 JDM 心理学家,而那些自学成才的人也能够擅长这份角色。这项工作是帮助决策者理清思路,审视所有角度,并将模棱两可的直觉感受转化为成熟的、语言形式的指令,使团队的其他成员也能够轻松地执行。
通常,定性专家在会完全了解并掌握所有的情况的基础上,帮助决策者进行决策,而不是片面地对某些情况。他们是值得信赖的顾问,头脑风暴的伙伴,以及决策者的参谋人。他们的参与可以确保项目朝着正确的方向进行。
9.研究者
许多经理在招聘时认为,团队的第一个成员需要有过当教授的经验,但实际上你并不需要那些博士学位的人才,除非你已经知道这一领域的现有算法都已经不能满足你的需求了。但大多数的团队通常都不会提前知道,因此只能按照正常招聘流程,这就好比你想在太空中使用一支笔之前,你得先保证这支笔是能够正常地工作。你可以先试着开始,当现有的方法都不能解决你的问题时,再考虑聘请相关的研究人员。
不要给研究者贴上特殊的标签。最好的是,等到团队发展到一定程度,足以意识到需要研究人员的时候再考虑请他们加入。但这样也会存在一个问题,换句话说,等到你用完所有可用的工具之后,再雇用你所需要的人,通常需要更昂贵的成本。
在发明在太空笔之前,请检查现有笔是否能够正常工作并满足我们的需求。
10+ 额外人员
除了以上提到的这些角色,下面我还列举了一些我比较喜欢的角色,这些角色也将在未来的智能决策项目中发挥重要的重要:
许多项目离不开这些角色,之所以没将这些列入前10名,主要是因为做决策并不是他们的主要业务。相反,他们都是各自学科的人才,并能为各自领域项目的数据学习和决策制定做出有用的工作。可以把这些角色想像成各自领域的专家,并对智能决策充满兴趣。
大团队 or 小团队?
读到这里,你可能已经不堪重负了。这么多需要了解的角色!深吸一口气,根据自己的需要,你可以从前几个角色中获得足够多有价值的信息。
我曾将应用型机器学习比作在厨房中烘焙:如果您个人想要开一家工业规模的比萨店,那么你需要一个大的制作团队或需要与一些供应商/顾问合作。如果你想利用周末时间制作一两个独特的披萨,如焦糖凤尾鱼披萨,那么你仍需要考虑我们所提到的所有角色,包括你要决定做什么 (角色1),使用哪些配料 (角色2和3),在哪里获得配料 (角色0),如何定制食谱 (角色5),以及如何测试披萨的口味 (角色4),以便制成品能给人留下深刻印象。但如果你只是想用来消遣的话,你可以自己承担所有的工作。当然,如果你的目标只是制作标准的传统披萨,那么你甚至不需要上述提到的这一切:你只需要拿来别人已经尝试和测试过的配方和配料(无需亲自重复发明),就可以开始烤披萨啦!
第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:zhangxuefeng
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。