物业貌似正在成为房地产的下一个风口。
据最近公开资料显示,目前已公布业绩的三家内地物业管理公司——碧桂园服务、雅居乐服务,及背靠新城控股的新城悦,2018年净利润增长均超过1倍。这与行业景气度密切相关。
在经历了规模化增长的黄金十年后,中国房地产行业正处于从“增量市场”向“存量市场”的转轨期,对存量市场的挖掘和运营成为未来企业竞逐的主战场。物业服务也告别之前“粗放式”的管理模式,开始向精细化运营发展。
然而,目前物业服务市场的现状有点参差不齐。物业服务行业正面临一系列痛点:一方面物业费升值空间有限,原有的管理水平跟不上日益膨胀的规模发展,另一方面,作为物业成本结构比例最高的人力成本却高居不下,并以每年10%-20%的比例逐年攀升。如果不采用数字化的手段来加以管控,未来物业公司面临的压力将不堪重负。
能够大幅提高效率、降低用人成本的人工智能技术,自然成为了物业服务公司的优先选择。实际上,物业服务领军企业都已经开始谋求智慧化转型,如龙湖地产将物业品牌升级为智慧服务,提出“空间即服务”的战略。在向业主提供刷脸门禁、红外垃圾监测等诸多服务的同时,其全面落地的“智囊型管家”项目也成为业主设备报修、卫生保洁等一站式服务的标配。
在所有这些物业公司提交的成绩单中,碧桂园服务的成绩尤为亮眼。作为港交所市值最大的物业管理公司,碧桂园服务率先采用领先AI技术,在物业服务这条新赛道上一路狂奔。
碧桂园服务所打造的云-边-端AI全栈解决方案,利用人工智能和物联网的深度融合,将物业服务场景智能化,并下放至边缘端,应用范围已覆盖前台、后台、决策、运营这四类近20-30个场景,这无论是对安防领域如一键巡逻、人脸/车牌识别等,还是对管理决策经营分析,都起到了强力的支撑作用,并大幅提高了管理效率。
2018年,碧桂园服务获得中国物业服务百强企业经营绩效第一,还摘得中国社区服务商客户满意度第一。在最近公布的年报上,碧桂园服务2018年营业额为46.75亿元,同比增长近一半,达49.8%,净利润为9.23亿元,同比上升129.8%。
这是怎么做到的?
人工智能如何落地物业服务?
尽管人工智能被业界热捧,但要真正实现落地还很难。缺乏足够样本量的有效数据及丰富的应用场景,较高的算法研究成本……使得人工智能一直犹如空中楼阁,更多地还是停留于概念化、理论化的尝试阶段,难以实现真正的商业化落地。而物业服务行业复杂的线下场景,以及大量的社区实时数据的积累,可以说为人工智能落地提供了天然实验场。
要实现人工智能在物业服务行业的落地,需满足四个基础条件:一是千万级的数据量,二是强大的运算能力,三是清晰的业务场景,最后要有物联网及物联设备的支持。
数据和场景都是现成的,也是碧桂园服务的核心优势。如何在运算和物联网上发力,是碧桂园服务接下来要做的事情。
从2016年开始,碧桂园服务就开始搭建技术平台,尝试云-边-端的整体物联网架构的建设,并逐步建立起基于设备端的传感器和一线应用能力。
为了在运算上提升支持,2018年,碧桂园服务与腾讯合作,基于腾讯丰富的产品矩阵和生态能力,尤其是在计算机视觉识别、语音识别、机器学习等方面的进展,打造了基于云端的AI智能平台和AI算法训练平台,所有业务场景都可以在云端进行反复的训练学习,赋予智能化。
为了让“AI无处不在”,不仅仅高挂在云端,而是下放到本地社区,碧桂园服务又打造了基于边缘的服务器,也就是说将云端的智能赋予边缘端,能够在边缘进行计算处理。
“以前人工智能应用需要把采集到的数据上传到云端,时效性很差。如果加入边缘处理,将云端能力赋能到社区本地去处理,就能快速反应,即时性很明显。”碧桂园服务首席信息官袁鸿凯介绍说。
而承载这种边缘处理能力的重要工具,就是智能魔盒。这也是降低设备智能化改造成本的一个关键。
据袁鸿凯介绍,以前物业公司做智能化改造时会上大量的服务器,车闸有车闸的服务器,门禁有门禁的服务器,设备智能管理还有专门的服务器,而现在可以把所有这些服务器的功能集成在一个服务器里面,这就是所谓的智能魔盒。
“相较同行,用智能魔盒来进行智能化改造的成本能降低30%左右。这对于物业服务行业来说相当可观。”
实际上,尽管不少云服务厂商都在积极打造自己的边缘能力。比如华为,有自己的边缘小站,而且基于硬件有一系列产品的支持,比如基于边缘的芯片,基于边缘的网络等,阿里也有一组边缘的设备生态的组织。但碧桂园服务在边缘能力上的不同之处,就在于其云端的算法是完全基于物业服务的场景特性去设计的,这也是它在物业服务领域树立门槛的一个核心优势。
至此,碧桂园服务构建起来基于云-边-端的AI全栈解决方案。它的逻辑是这样的:通过云端的AI智能平台和算法平台,对设备设施数据进行管理分析;然后下传至边缘端,来集成相关分析结果及算法训练后的能力,最后通过边缘去管理所有端的设备,并将人工智能赋能到所有终端设备,实现“AI无处不在”。
要说与场景结合的典型案例,不得不提“一键巡逻”。原来保安巡逻都是每隔1个小时巡逻一次,一次至少也要1小时,而且在监控室,1000多张监控显示屏滚动播放,靠人力很难及时发现问题。利用云-边-端解决方案后,只需联动小区所有关键路径上的摄像头进行一次性抓拍,然后边缘会把这些图片都切好,送到云端,依赖云端强大的算法生成一份巡逻报告,再将报告传至边缘端,这样一线人员看到的就是一份已经算好的安全报告,会根据报告去调动巡逻岗处理各种各样的状况。据袁鸿凯介绍说,一键巡逻功能上线后,现在不需要人去线下巡逻,只需每隔20分钟抓取一次监控,就能实时解决问题。
再比如垃圾满溢服务。在对垃圾进行清扫时,有一项重要工作就是对垃圾桶的溢满要做一个检测,基于这一场景,把它放到云端去进行相应的学习,之后通过监控检测出有溢满的垃圾桶,就会及时跟下面的维修或保洁人员进行联动,及时进行清扫。这就是碧桂园服务整体的云端+边缘端+人工智能的整体的一个联动效果。
值得提出的是,人工智能对碧桂园服务提升管理效率也是显而易见。
譬如抓小偷。原来监控室里有3-400路的摄像头传输,小偷在为非作歹时,仅靠肉眼,难以从监控中第一时间识别小偷身份。现在,碧桂园服务启用了周界防范功能,就是在小区内或外面划定一片区域,你靠近区域的外围时,系统不会发出警报,但是当有一些行为,如攀爬、大的动作、踹门等异常行为发生时,系统就会发出很强烈的警示,并与语音联动,提示人为去干预。
还有对可疑人员的以图找人。就是通过对可疑人员的面部识别,系统会根据这个人的行动轨迹、具体位置等,在小区范围内搜索这个人。
人工智能不仅仅被应用于前端的安防领域,包括人脸识别、语音报修、辅助巡逻等,在业主服务,如提醒缴费机器人,以及后台的管理决策支持、企业运营等角度,也发挥着不小的功效。
最典型的是管家服务。在碧桂园服务,管家系统集成了CRM、ERP等系统的整合,一个管家通过系统,至少管理500-800户业主。通过将成本数据、收入数据等模型的融合,再通过运算,人工智能可以给实际决策人员以支撑。
“比如收费率的预测,实际上影响收缴率大概有200多个因素,这些因素融合在一起会导致收缴率的波动,但利用人工智能最终预测的波动不会超过1%。这样在下发年度经营指标时就是很好的一个参考。”袁鸿凯介绍说。
碧桂园服务正在研发的提醒缴费机器人,更是会替代管家完成提醒缴费任务。比如针对不同业主、不同的缴费习惯,系统会提供不同的策略,而且会有语音的介入。如果一个人习惯在月底缴费,系统就不会在月底之前的时段发出提示。而且管家不需要给业主打任何电话,全部由系统自动完成。这样,这项复杂的工作就会被替代,管家就可以思考怎么为业主提供定向服务。
对于人工智能会否替代人,造成人员的大批下岗、失业,袁鸿凯直言不会。他认为人才是企业数字化转型的重要因素之一,人员匹配是根据小区面积来定的。通过数字化、智能化的转型,安保人员在掌握人机结合、人工智能这些科技上的能力会越来越高,单个管理面积和管理效率也会大幅提升。
人工智能未来的挑战和变革
回看人工智能,从 IBM “深蓝”横空出世,到 AlphaGo 大战世界冠军,AI已悄无声息地渗透进我们现实生活的点点面面。无论是交通导航、无人仓库,还是语音助手、智能服务机器人,创建智慧城市、智慧社区正在成为国家层面大力推动的一个长远规划。
从物业管理行业来说,AI+社区的布局也越来越成为众多物业公司的选择。尽管目前AI在社区服务上的落地还不尽善尽美,用户习惯也有待培养,但随着人工智能在自然语言处理技术、语音语义分析以及人脸识别等技术上的日臻完善,AI+社区的全面落地指日可待。
如何让碧桂园社区结合人工智能的潜能发挥到最大?袁鸿凯认为,下一个主战场是机器人领域。与AI、机器人的深度融合,或将成为碧桂园“AI+社区”进化之路的有力武器。
实际上,碧桂园控股董事局主席杨国强早在去年就确立了打造“地产、农业、机器人”三驾马车的战略布局。并成立了全资子公司“博智林机器人”,研究机器人在建筑、餐饮、物业、零售等领域的应用,其中位于碧桂园总部的机器人餐厅已经开始实际运营。
在袁鸿凯看来,机器人也是人工智能和物联网深度结合的完美呈现。
“大多数情况下,人工智能并不是一种全新的业务流程或商业模式,而是对于现有的业务流程、商业模式的根本性改造。AI重在提升效率,而非发明新的流程、新业务。机器人在服务场景的广泛应用必须降低成本,而有效降低成本的途径就是依靠物联网和边缘端的人工智能。未来是一个人类和机器共存、协作完成各类工作的时代。人工智能将会重建人类与机器之间的相互协作关系。”
尤其是,在AI技术不断迭代,不断有更加强大的功能注入后,系统的迅速反馈和适应能力也是企业面临的一个挑战。
袁鸿凯认为,如果将单体机器人注入智能的能力,成本很昂贵,所以机器人必须是要与边缘端去结合的,这样才能完成整体的动作。边缘端需要不断更新,这就要求云端结合大量的场景不断地去训练,不断赋能,这对系统有很高的要求。
对于AI在物业行业广泛应用面临的挑战,袁鸿凯认为有两点,一是业务场景;二是平台能力。
“就业务场景来说,目前AI算法研究的公司接触不到复杂的业务场景,随着AI的发展,AI将越来越多和我们线下复杂场景结合。如何快速适应这些复杂场景将是所有AI服务商的最大挑战。二是平台的处理能力,复杂多样的业务场景会产生大量的各类数据(视频、图片、音频等),平台是否能支持这样大数据量的及时处理也是挑战。”
第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:kongwen
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。