首页 > 人工智能 > 正文

AI安防产品发展现状与趋势分析

2019-07-04 10:20:54  来源:安防知识网

摘要:实际上,人工智能产业发展已有60多年,但是,一直以来AI学习能力十分有限,因此,也并未走进公众的视野。
关键词: AI 人工智能
  实际上,人工智能产业发展已有60多年,但是,一直以来AI学习能力十分有限,因此,也并未走进公众的视野。不过,得益于近年来深度学习算法技术的突破,AI技术才逐渐走向产品化、产业化和工程化。在人工智能发展火热趋势下,不同行业不断涌现各类AI产品和解决方案,而安防领域由于具有海量视频数据资源池的优势,自然成为AI工程化的最先着陆地。那么当前来看,AI安防产品有哪些特点以及落地情况和未来发展趋势如何?
\
  揭密:AI产品工程化的真相
 
  毋庸置疑,AI安防时代已来,它对于安防产业发展的价值意义不言而喻。总结来讲,AI在安防落地具有三大应用,即视频结构化、生物识别和物体识别。其中,生物识别包括人脸识别、指纹识别、虹膜识别、形体识别、声纹识别等,而人脸识别是当前公共安全领域应用最为广泛,技术发展较为成熟的AI技术,它可以快速实现人脸识别、人脸检测、人脸比对、活体检测、人脸跟踪等技术应用,帮助公安人员快速确定并锁定对象身份,做到事前预防、事中预警和事后核查,极大提升警方办案效率。
 
  不过,AI产品的工程化落地并非是一蹴而就。
 
  首先,不同行业的实际业务场景,对前端AI产品的算法和算力资源的要求不尽相同,而且对前端产品的形态、可靠性以及功耗网络要求也不同。而且,由于安防业务场景碎片化和复杂化比较严重,对算法提出多样化、个性化的多维分层要求,从而去适配前端产品AI产品各种应用的发挥,而这显然不是短时间内就可完成的工程。
 
  其次,AI产品的部署成本过高,加上用户对AI理解有偏差,造成用户为AI产品买单的欲望并不强烈。再者,当前现阶段各人工智能应用领域的标准存在重大缺失,顶层设计与复杂现状一时仍然难以匹配。
 
  最后,人工智能产品是基于二级图形分析产品,需要更精准的理解场景,而且很多复杂的场景应用并非仅靠AI就能解决,必须结合宽动态、光传感器件、变焦机芯以及安装位置与角度等因素,来解决AI工程化问题。
 
  基于以上原因分析,当前 AI安防产品虽然已走向实用,甚至已经在平安城市和雪亮工程大项目中得到应用,但总的来看,AI安防产品在整体安防市场领域占比仍然较低,可以说,远远低于普通摄像机的布点数量。但无疑,AI安防产品规模化应用是大势所趋,未来已来!只是时间问题。
 
  端边集成是安防产品的趋势
 
  业界皆知,云端边融合是AI安防市场发展的主流方向。所谓的云端边融合即是通过边缘计算将人脸识别、物体识别等应用的计算力分摊至前端,从而解决由于数据量暴涨给传输和云端处理带来的压力。边缘计算其实是实现嵌入式人工智能的关键,其实时性比云端更强,更能满足用户更快的业务响应需求,而云端承载的是第三方提供的专业性服务,以及更加复杂的运算,比如对模型的优化、算法迭代等相对灵活的部署方式。
 
  实际上,云边融合也是智能计算前移的过程,这必须对前端设备的算力提出更高的要求,而随着AI芯片算力的日益增强,边缘计算能力将得到重大突破。不过,由于前端摄像机的本身空间狭小,一般来讲,较大及复杂的数据量的边缘计算及存储则放至边域处理。
 
  深圳市巨龙创视科技有限公司总经理孙成智在接受a&s媒体采访中表示,相对来讲,云端的算力最强,前端的算力最弱,而安防领域大部分业务应用场景对端侧的响应速度都有很高要求,显然全部数据传输至云端处理,将造成较长的时延性,因此,安防企业在设计AI产品架构系统方案时,一般都会采用集中的前端部署边缘计算,但纯粹的前端无法完全解决数据计算问题,而此时,需要借助边域的算力共同承担云端算力,这意味着,端和边必须先集成,形成整体的边缘智能计算,然后再和云端计算相结合,构建一体化的云边端架构。
 
  当前来看,AI安防系统架构原理有三种方式,一是前端为普通人脸摄像机-码流传输和录像存储-NVR,采用前流后比对的原理,人脸检测、人脸识别和人脸比对放到NVR(即边域);二是人脸抓拍机-码流传输和录像存储-NVR, 采用前抓后比对的原理,人脸检测功能放至IPC端,人脸识别和人脸比对放在NVR边;二是是人脸比对机-码流传输和录像存储-NVR,采用前比后呈现的原理,即人脸检测、人脸识别和人脸比对全部放到IPC端。
 
  在云边端架构中,端无疑侧重多维感知数据采集和前端智能处理;边则侧重感知数据汇聚、存储、处理和智能应用。而云端则是侧重于集中式处理更为复杂及庞大的数据的运算。端边集成是AI安防产品发展的趋势,而后端云化以及与端边融合的一体化系统架构,则无疑是未来AI安防市场发展的必然走向,也将是AI安防工程化的主旋律。

第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:baiyl

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。