2018-12-14 09:53:54 来源:云栖社区
除了日常业务需求,阿里的双11场景,让我们持续思考如何低成本高效率地支持峰值流量,把这些思考变成现实,变成技术竞争力。在大促资源弹性上有这么几个思路:
大促的成本=持有资源X持有周期,更通用的资源(云)、更快的部署(容器化)是缩短持有周期的关键,如何更少地使用资源(使用离线或只扩计算资源),就依赖存储计算分离架构的实施。沿着极致弹性的目标,数据库经历了混合云弹性、容器化弹性、计算存储分离弹性三个阶段,基础架构从高性能ECS混合云、容器化混合云、存储计算分离的公共云和离线混部一步步升级。
基本上架构演进就是每年验证一个单元,第二年全网铺开,每年挖个坑然后和团队一起努力爬出来,每次演进需要跨团队背靠背紧密合作,快速拿下目标,这也是阿里最神奇的力量。借助于底层软硬件技术发展,一步步的架构升级使得弹性混部越来越灵活和快速。
一、混合云弹性,高性能ECS应运而生
2015年之前,我们的大促弹性叫人肉弹性,也就是大促要搬机器,比如集团用云的机型支撑大促,大促结束后搬机器归还给云。但就在2015年底的一次会议上,李津问能否把数据库跑到ECS上,如果可以,就真正帮助了云产品成熟,当时张瑞和我讨论了一下,在会议上就答复了:我们决定试一下。这个合作非常契合会议主题“挑战不可能——集团技术云计算战区12月月会召集令”。
对于数据库跑在虚拟机上,我们判断最大的消耗在IO和网络的虚拟化上,因此如何做到接近本机性能,怎么穿透虚拟化就是一个问题。网络的用户态技术DPDK已经比较成熟,但如何做到足够高的效率,是否offload到硬件来做计算是个问题。文件系统IO的用户态链路有个Intel的SPDK方案,Intel推出后各大厂商还在验证中,还没有规模的应用。我们就在这个时候启动的这个项目,叫高性能ECS。通过和ECS团队紧密合作,最终我们做到了最差场景高性能ECS相比本地盘性能损耗低于10%。
2016年在集团通过了日常验证,2017年大促开始大规模用云资源直接弹性。这个项目除了打造高性能ECS产品,更重要的是沉淀了网络和文件IO的纯用户态链路技术,这是一个技术拐点的产生,为阿里后续存储计算分离相关产品的高性能突破打下了基础。
二、容器化弹性,提升资源效率
随着单机服务器的能力提升,阿里数据库在2011年就开始使用单机多实例的方案,通过Cgroup和文件系统目录、端口的部署隔离,支持单机多实例,把单机资源利用起来。但依然存在如下问题:
随着单机部署密度越来越高,社区Docker也开始发展起来,尽管还不成熟,Docker本身依赖Cgroup做资源隔离,解决不了Cgroup的IO争抢或OOM问题,但它通过资源隔离和namespace隔离的结合,尝试对资源规格以及部署做新的定义,因此我们看到了容器化更多的优势:
2015年数据库开始验证容器化技术,2016年在日常环境中大量使用。因此在集团统一调度的项目启动后,我们就定下了2016年电商一个交易单元全部容器化支撑大促的目标,承载交易大盘约30%,并顺利完成。2017年数据库就是全网容器化的目标,目前数据库全网容器化比例已经接近100%。
容器化除了提升部署弹性效率,更重要的是透明底层资源差异,在没有启动智能调度(通过自动迁移提升利用率)前,仅仅从容器化带来的机器复用和多版本混部,就提升了10个点的利用率,资源池的统一和标准部署模板也加快了资源交付效率。容器化完成了底层各种资源的抽象,标准化了规格,而镜像部署带来了部署上的便利,基于数据库PaaS和统一调度层的通力合作,数据库的弹性变得更加快速灵活,哪里有资源,哪里就能跑起数据库。
三、计算资源极致弹性,存储计算分离架构升级
实现了容器化混合云,是不是每年大促使用高性能ECS,容器化部署就可以了呢?其实还是有不足的:
因此如何做到更快、更通用的弹性能力,是一个新的技术问题。随着2016年调度的发展,大家考虑机器是不是应该无盘化,是不是应该存储计算分离,从而加快调度效率,而数据库的存储计算分离更是争议很大。
数据库的Share Nothing分布式扩展已经深入人心,存储计算分离会不会回到IOE状态?如果IDC是一个数据中心,应用就是计算,DB就是存储,DB自己再做存储计算分离有意义吗?数据是主备双副本的,存储计算分离后变成三副本,存储集群的容量池化能balance掉额外副本的成本吗?
为此我开始测算存储计算分离架构在大促场景下的投入产出,我们来看下大促场景,弹性大促时,业务需求计算能力数倍甚至10倍以上扩容,承担大促峰值压力,而磁盘因为存储长期数据,峰值的数据量在整体占比不高,因此磁盘容量基本不需要扩容。
在以前本地磁盘跑主备的架构,无法计算、存储分开扩容,大促指标越高,添加标准机器越多,成本浪费越大,因为磁盘是标准数据库机器的主要成本。而存储计算分离的情况下,测算下来,我们看到在较低日常压力下存储计算分离成本是比本地盘高的,但再往上,存储计算分离只需要增加计算,存储集群因为池化后,不只容量池化了,性能也池化了,任何高负载实例的IO都是打散到整个集群分担的,磁盘吞吐和IOPS复用,不需扩性能,成本优势非常明显。
磁盘不扩容,只扩计算自然成本低很多。传统的思考是存储集群容量池化的优势,但在大促场景我们更多用到的是性能的池化,突破单机瓶颈,因此我们提出了电商异地多活所有单元存储计算分离,其余业务继续使用本地磁盘进行同城容灾的目标架构。
提出这个设想,而这个架构的可行性如何判断?基于一些数字就可以推断,大家知道SSD磁盘的读写响应时间在100-200微秒,而16k的网络传输在10微秒内,因此尽管存储计算分离增加两到三次的网络交互,加上存储软件本身的消耗,整体有机会做到读写延时在 500微秒的范围内。在数据库实例压测中我们发现,随着并发增加,存储集群具备更大的QPS水位上线,这印证了性能池化突破单机瓶颈带来的吞吐提升。
数据库团队在2017年开始验证存储计算分离,基于25G的TCP网络实现存储计算分离部署,当年就承担了10%大促流量。我们基于分布式存储做到了700微秒的响应时间,这里内核态和软件栈的消耗较大,为此X-DB也针对性地做了慢IO优化,特别是日志刷盘的优化,开启原子写去掉了double write buffer提升吞吐能力。
这个过程中,我们沉淀了存储的资源调度系统,目前已经作为统一调度的组件服务集团业务。我们对当前架构性能不太满意,有了X-DB的慢IO优化、存储计算分离跨网络的IO路径、存储资源调度等技术沉淀,加上阿里巴巴RDMA网络架构的发展,2017下半年数据库开始和盘古团队一起,做端到端全用户态的存储计算分离方案。
四、全用户态IO链路的存储计算分离架构落地
从数据库软件X-DB的IO调用开始,就走我们自己研发的用户态文件系统DBFS,DBFS使用盘古的用户态客户端,直接通过RDMA网络访问后端盘古分布式文件系统,整个IO链路完全绕过了内核栈。这里DBFS绕过了内核文件系统,自然也绕过了pagecache,为此DBFS针对数据库场景,实现了更简洁高效的BufferIO机制。
因为IO都是跨网络远程访问,因此RDMA起到了重要作用,以下是RDMA与TCP网络在不同包大小下的延时对比,除了延时优势外,RDMA对长尾IO的tail latency能够有效控制,对一个数据库请求涉及多次IO来说,对用户请求的响应时间能够更有效保证。RDMA技术的应用是DB大规模存储计算分离的前提条件,通过我们的数据实测,DBFS+RDMA链路的延时已经和Ext4+本地盘达到相同水平。
今年我们首次大规模部署RDMA,如履薄冰。经过多次压测、演练, RDMA配套监控和运维体系建设已经完善起来,我们能够在1分钟内识别服务器网卡或交换机的网络端口故障触发告警,能够故障快速隔离,支持业务流量快速切走,支持集群或单机的网络RDMA向TCP降级切换等等。在我们的切流演练中,从DBFS看到RDMA链路的写延时比TCP降低了一倍。我们在全链路压测中,基于RDMA技术保障了在单个数据库实例接近2GB吞吐下磁盘响应时间稳定在500微秒左右,没有毛刺。
盘古分布式存储为了同时支持RDMA、EC压缩、快照等功能,做了大量的设计优化,尤其对写IO做了大量优化,当然也包括RDMA/TCP切流,故障隔离等稳定性方面的工作。作为阿里的存储底盘,其在线服务规模已经非常庞大。
整个技术链路讲清楚之后,说一下我们在规模应用中遇到的难题,首先,容器的网络虚拟化Bridge和RDMA天然不兼容,由于容器走Bridge网络模式分配IP,而这个是走内核的。为了应用RDMA,我们必须使用Host网络模式进行容器化,走Host + X-DB + DBFS + RDMA +盘古存储这样的全用户态链路。
其次,对于公有云环境,我们通过VPC打通形成混合云环境,因此应用通过VPC访问数据库,而数据库使用物理IP用于RDMA访问盘古以及X-DB内部X-Paxos。这个方案复杂而有效,得益于DBPaaS管控的快速迭代和容器化资源调度的灵活性,这些新技术能够快速落地,在变化中稳步推进。
今年年初,我们定下了2018大促的支撑形态,即异地多活的中心机房将计算弹性到大数据的离线资源,单元机房将计算弹性到公共云资源,不搬数据直接弹性扩容,快上快下的大促目标。今年DB全局一盘棋,完成了资源调整,实现了电商各站点的存储计算分离架构升级,并通过X-DB异地多副本架构灵活部署,实现了弹性大促目标。
基于底层盘古分布式的共享存储,弹性不需要迁移数据,只需要挂载磁盘,数据库可以像应用一样快速弹性,做到一个集群10分钟完成弹性扩容。同时在全链路压测过程中,对出现性能瓶颈的业务,我们可以边压边弹,快速弹到更大的规格上。基于快速弹性的能力,今年DB所有站点的大促扩容都在三天内完成,这在以前是不可能实现的,这就是存计分离的架构带来的效率。
最后,感谢阿里内部通力合作的盘古、网络、调度、IDC等团队,正是大家的支持让阿里数据库的基础架构才能不断升级,不断提升效率和成本的竞争力。
数据库存储计算分离的架构升级,大大节约了大促资源成本。目前我们的弹性能力正在日常化,通过数据预测,自动触发弹性扩容,我们的目标是让单机容量问题导致故障成为历史。
接下来我们平台将向智能化发展,对于数据库来说,只有基础架构足够强大,足够快速,灵活,弹性,智能化才能有效发挥。
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。