首页 > 基础设施 > 正文

提升Linux开发者的能力

2012-09-13 15:27:58  来源:51cto

摘要:不管是谁,只要有在其他平台上使用 AIX 或者 Linux 的经验,就可以受益于与世界顶尖的 IBM 硬件 POWER 相结合的开放源代码社区强有力的基础。
关键词: Linux

    64位POWER体系结构是公认的高性能、可靠而且有用的企业平台,它为 UNIX和Linux 应用程序开发者提供了新的选择。不管是谁,只要有在其他平台上使用 AIX 或者 Linux 的经验,就可以受益于与世界顶尖的 IBM 硬件 POWER 相结合的开放源代码社区强有力的基础。从价格适中的 2- 路服务器到垂直扩展的超级计算机再到 JS20 BladeCenter,基于 POWER 的机器具备所有的大小和等级,始终领先于人们对企业级硬件的预期。


    Linux 发行版本


    可选范围广是 Linux 社区为人们所津津乐道的一个强大之处。POWER 版 Linux 主要由 Red Hat Linux 和 SUSE Linux 这两家企业 Linux 厂商提供。这两种 Linux 发行版本各成体系,各有所长,都提供了 Linux 开发者所期望的完整的工具链、库以及开发工具。本文分别进行了评论。


    注意,TurboLinux 也得到了支持。TurboLinux Enterprise Server8 使用的是来自 SUSE Linux 的许可代码,所以在下面的论述中,那些适用于 SUSE 的特性同样适用于 TurboLinux


    Red Hat Enterprise Linux 3 (RHEL3)


    Red Hat 成功地充当了开放源代码社区的领导者和先驱者。2003 年 Red Hat Linux 发布了可用于 POWER 体系结构的企业版,并带来了先进的 Linux 技术。


    内核


    RHEL3 的 2.4.21 Linux 内核为 POWER 体系结构进行了优化。甚至在 Linux 2.6 发布之前,Red Hat 已经在他们的 Linux 2.4 内核中移植(backport)了一些 2.6 的特性。


    其中,最引人注目的是 Native Posix Threads for Linux(NPTL)库。先前的线程模型,即 Linux Thread,是传统的 1:1 线程模型,与 Linux 2.4 调度器配合使用,一段时间以来这个模型就是被革新的目标。在 RHEL3 中,Red Hat 将新的线程模型从 2.5 的开发树中移植到了 2.4 内核,从而使得可扩展性更好,多线程更快,最明显的是从根本上提高了 Java 性能。


    不同于一些商用 UNIX 操作系统中所用的 m:n 线程,NPTL 仍是 1:1 模型,但是现在没有人怀疑它的性能。新的线程模型在陈旧的 450 Mhz Intel 处理器上有能力在两秒钟内生成和销毁 100,000 个线程,因而可以提供企业级 Linux 等所需的性能。Java 应用程序的执行速度通常会比使用旧的 Linux 线程模型时快八倍。


    前沿开发的结合并不仅限于内核线程模型。RHEL3 中还包括一个新的改进的 glibc,版本为 2.3.1。出于 NPTL 线程性能方面的需要,glibc 2.3.1 还为 Linux 应用程序引入了效率更高的库。


    SUSE SLES8


    SUSE SLES8 是两种企业版 Linux 中资格较老的一个,已经到了它的生命周期的末期。SLES 8 的特色是定期更新的 2.4 内核(SUSE 已经为 SLES8 用户发布了三个服务包,以确保可以使用补充更新的系统安全和性能),它提供所有类别的选项。有三种带日志的文件系统可供选择。默认情况下,在 SLES8 中可以使用所有常见的数据库、Web 服务器和邮件服务器应用程序以及最新发布的 KDE 和 Gnome 桌面环境。SLES8 中当前可用的 2.4.21 内核为实时地执行 32 位和 64 位的应用程序提供了一个 64 位的基础。


[page]    即将发布的 SLES9 现在还在测试中,SUSE 的最后一项任务是融合新的 GCC、glibc 和 Linux 2.6 内核。发布后,SLES 9 将提供第一个可用于 IBM eServer? iSeries? 和 pSeries? 服务器的 Linux 2.6 内核。


    使用哪个发行版本?


    由于 RHEL 3 和 SLES8 所提供的线程模型不同,所以当然不能认为会有完全的二进制兼容性。好消息是,开发者几乎总会发现,不同的 Linux 发行版本中代码编译是一致的,POWER 版 Linux 也不例外。


    不过,在部署时,一些应用程序对具体的发行版本更为敏感。例如,SLES8 上默认使用的 Reiser 文件系统以高性能地处理小文件而闻名。主要对小于 1 KB 的文件进行读写访问的应用程序适合使用这种文件系统,这样的程序最好运行在 SLES8 上,而运行 Java 线程的应用程序将受益于 NPTL 的 RHEL3 实现。


    开放源代码模型的优点在于它的灵活性,POWER 版 Linux 也是灵活的。也就是说,开发者将可以找到关于在 RHEL3 和 SLES8 上进行开发的通用参考资料。编译器、IBM Java Developer’s Kit ,以及像流行的集成开发环境 Eclipse 这样的开发工具,都是这两种发行版本中自由可用的工具的例子。


    编译器和库


    POWER 版 Linux 是两个方面的结合:最好的开放源代码开发和企业级的硬件。最好是提供 C、C++ 和 Fortran 编译器的一个选择以反映这一结合。


    GNU Compiler Collection (GCC)


    GNU GCC 是用于所有体系结构的 Linux 中应用最广泛的编译器,Red Hat 和 SUSE 都使用此编译器来编译随它们的产品发布的二进制文件(可执行文件)。由于 GCC 3.2 可以生成 32 位的和 64 位的二进制文件,所以 RHEL3 和 SLES8 中都提供了 GCC 3.2。RHEL3 实现利用了一个“biarch”风格的双编译器,使用一个编译器标记(-m64)来进行 64 位编译。


    与之不同,SLES8 使用单独的 64 位 GCC 的工具链,这个工具链默认存储在 /opt/cross 中。为了在 SLES8 中可以使用 64 位编译器,开发者应该确保他们的配置脚本和 Makefile 文件可以识别出这个编译器。您可以通过将 CC 环境变量设置为 64 位 GCC 编译器的位置来完成这一任务。


    当前,人们正在对 GNU 编译器集进行重大革新,为 POWER 体系结构而进行性能优化。在即将发行的 3.3 和 3.4 中,GCC 的调度和信号处理将得到改进。另外,针对特定体系结构的优化(比如对 IBM JS20 BladeCenter 中 PPC970 芯片的 VMX/Altivec 支持)将为编译后的代码带来极大的性能优势。不过,SLES8 和 RHEL3 现在使用的都是 GCC 3.2 版本,在这里评述了对这些版本性能的优化。


    GCC 3.2 没有为 POWER 处理器进行针对特定体系结构的优化。所以,编译时不建议使用针对特定体系结构的标记,比如 -mpower。可以使用这些选项,但通常不会带来性能上的提高。与 x86 上的 GCC 实现不同,GCC 3.2 中没有包括 -fPIC 标记。为生成动态链接的二进制文件,需要在所有的 Makefile 文件中包含 -fPIC。如果您正从 Intel 上的 Linux 移植代码库(codebase),这尤其关键,因为已有的 Makefile 文件可能没有显式地使用这个标记。


    除了要识别出那些没有被当前用于 POWER 体系结构的 GCC 所使用的标记之外,您应该知道那些对 x86 和 POWER 体系结构来说可用的标记。这些标记包括处理重定位、目录(table of contents)大小、浮点选项、位调整等等的编译标记。例如,大 TOC 支持(多于 8K 个条目)需要多个 TOC,由 -mminimal-toc 编译标记指定。要回顾这些标记,请阅读源代码包中的标准 GCC 文档。


[page]    IBM VisualAge 编译器集


    除了 GCC 以外,IBM 还发布了高性能 VisualAge 编译器集,这个编译器集既可以用于 RHEL3,也可以用于 SLES8。这些用于 C、C++ 和 Fortran 的编译器将性能优化技术发挥到了极致;它们被精心地定制,以全面地利用 POWER 体系结构。高性能计算(High Performance Computing)开发者通常会发现,只要使用这些编译器来重新编译他们的代码,性能就会提高 30% 以上!


    使用 VisualAge 进行优化很简单,只需预先设定优化级别,这些级别对应使用不同种类的算法。通常,使用简单的 -O3 -qtune=auto 和 -qarch=auto 会带来最为显着的性能提高。第三级优化将自动识别出芯片类型并进行芯片(但不是体系结构)无关的优化。进一步使用 -O4 优化标记可以获得更高的性能,但付出的代价是针对特定芯片的优化、程序间分析以及高阶转换例程。高性能代码应该首先以 -O3 优化,然后再尝试 -O4。虽然 -O4 可能会提高性能,但是它对代码结构更为挑剔,而且 POWER 系列微处理器系列上的二进制兼容性更为受限。


    为避免出现库不兼容的不愉快情形,POWER 版 Linux 中的 VisualAge 编译器设计为分别去使用每个发行版本包中所带的 glibc,而且它们甚至使用本地 Linux 链接器。渴望性能的应用程序显然需要 POWER 版 Linux 的这一独特功能。


    有大量的关于用于 POWER 版 Linux 中的 GCC 和 VisualAge 编译器集编译期优化的文档。在 参考资料 中列出了所有 POWER 版 Linux 开发者都应该放在桌面上的可免费获得的技术资料。


    IBM JDK 1.4.1


    IBM 已经将开发资源加入到对定制的 JDK 的改进中,可用于 POWER 版 Linux 的 JDK 既有 32 位的也有 64 位的。BHEL3 和 SLES8 的安装包中都有 IBM JDK 1.4.1,可以与 POWER 版 Linux 的 Eclipse 集成开发环境配合使用。


    开发工具


    很多 Linux 开发者乐于使用传统的开发工具,比如 vi 或 Emacs。自然,这些以及 gdb 等 Linux 中常见的内核级调试工具都是可用的。不过,除了这些工具以外,POWER 版 Linux 的特色是支持 Eclipse IDE 等开发工具。VisualAge 编译器有详细的代码分析选项来确定源代码中的字符排列顺序(endianness)以及 64 位兼容性,并且,舒适的 KDE 和 Gnome 桌面环境让那些习惯于图形界面的开发者非常自如。高性能计算(HPC)以及生命科学(Life Science)开发者将受益于可用的通用应用程序,例如 NCBI 应用程序。IBM 的高级数学和科学库 ESSL 和 P/ESSL 也可以用来辅助 POWER 版 Linux 上的高性能应用程序。随着 Globus Toolkit 等相关解决方案与集群系统管理(Cluster Systems Management, CSM)等集群工具的结合,基于 POWER 版 Linux 的网格计算变得活跃起来。


    结束语


    POWER 版 Linux 为那些需要使用更为健壮的硬件的应用程序提供了一个高性能环境,同时还提供了全部的硬件和软件资源。在双执行环境中,64 位的应用程序可以与 32 位的应用程序和平共处。IBM iSeries 和 pSeries 系列产品为 Linux 提供了健壮的硬件基础,而这些产品以前是不能用于 Linux 的。Red Hat 和 SUSE 一直致力于让人们可以用上最好的开放源代码发行版本,IBM 则提供为 AIX 开发者所熟悉的领先的中间件解决方案。Eclipse 等新开发工具使转换变得容易,先进的开发环境提供了希望从 Linux 与 IBM iSeries 和 pSeries 服务器的结合中得到的灵活性和性能。


第三十四届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:liangxuejuan

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。