首页 > 大数据 > 正文

【大数据分析】纷繁复杂的数据越多越好

2018-09-11 11:41:34  来源:大数据观察

摘要:传统的样本分析师们都很难容忍错误数据的存在,因为他们一生都在研究如何防止和避免错误的出现。
关键词: 数据分析
\
  传统的样本分析师们都很难容忍错误数据的存在,因为他们一生都在研究如何防止和避免错误的出现。

  在收集样本的时候,统计学家会用一整套的策略来减少错误发生的概率。

  在结果公布之前,他们也会测试样本是否存在潜在的系统性偏差。这些策略包括根据协议或通过受过专门训练的专家来采集样本。但是,即使只是少量的数据,这些规避错误的策略实施起来还是耗费巨大。

  尤其是当我们收集所有数据的时候,这就行不通了。不仅是因为耗费巨大,还因为在大规模的基础上保持数据收集标准的一致性不太现实。就算是不让人们进行沟通争吵,也不能解决这个问题。

  大数据时代要求我们重新审视精确性的优势。如果将传统的思维模式运用于数字化、网络化的21世纪,就会错过重要的信息。

  执迷于精确性是信息缺乏时代和模拟时代的产物。在那个信息贫乏的时代,任意一个数据点的测量情况都对结果至关重要。所以,我们需要确保每个数据的精确性,才不会导致分析结果的偏差。

  如今,我们已生活在信息时代,我们掌握的数据库越来越全面,它不再只包括我们手头现象的一点点可怜的数据,而是包括了与这些现象相关的大量甚至全部数据。我们不再需要那么担心某个数据点对整套分析的不利影响。我们要做的就是要接受这些纷繁的数据并从中受益,而不是以高昂的代价消除所有的不确定性。

  在华盛顿州布莱恩市的英国石油公司切利博因特炼油厂里,无线感应器遍布于整个工厂,形成无形的网络,能够产生大量实时数据。酷热的恶劣环境和电气设备的存在有时会对感应器读书有所影响,形成错误的数据。

  但是数据生成的数量之多可以弥补这些小错误。随时监测管道的承压使得BP能够了解到,有些种类的原油比其他种类更具有腐蚀性。以前,这些都是无法发现也无法防止的。

  有时候,当我们掌握了大量新型数据时,精确性就不那么重要了,我们同样可以掌握事情的发展趋势。

  大数据不仅不再让我们期待精确性,也让我们无法实现精确性。

  然而,除了一开始会与我们的直觉相矛盾之外,接受数据的不精确和不完美,我们反而能够更好地进行预测,也能够更好地理解这个世界。

  值得注意的是,错误性并不是大数据本身固有的。它只是我们用来测量、记录和交流数据的工具的一个缺陷。

  如果说哪天技术变得完美无缺了,不精确的问题也就不复存在了。

  错误并不是大数据固有的特性,而是一个亟需我们去处理的现实问题,并且有可能长期存在。

  因为拥有更大数据量所能带来的商业利益远远超过一点精确性,所以通常我们不会再花大力气去提升数据的精确性。

  这又是一个关注焦点的转变,正如以前,统计学家们总是把他们的兴趣放在提高样本的随机性而不是数量上。如今,大数据给我们带来的利益,让我们能够接受不精确的存在了。
第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:zhangxuefeng

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。