初探:企业数据湖治理最佳实践!
初探:企业数据湖治理最佳实践!
2018-10-10 09:36:55 来源:IT168抢沙发
2018-10-10 09:36:55 来源:IT168
摘要:通常,那些刚接触大数据的人,甚至是精通Hadoop的老手,都会尝试使用不同的脚本、工具和第三方供应商来组建几个集群并拼凑在一起,这既不符合成本效益,也不可持续。本文,作者将描述数据湖与集群拼凑方式相比的优势是什么,集群如何规划和治理才能构建有效的数据湖。
关键词:
大数据
数据湖正在成为一种越来越可行的解决方案,用于企业从大数据中提取价值,并代表早期大数据采用者合乎逻辑的下一步。这一概念是2011年提出来的,最初的数据湖是对数据仓库的一个补充,主要是为了解决数据仓库开发周期漫长,开发和维护成本较高,细节数据丢失等问题。数据湖大多相对于传统的基于RDBMS的数据仓库,在隔离的逻辑区域中提供结构化、非结构化和历史数据的灵活性,这已经和安全性一起为企业带来了一系列转型的可能。
然而,许多潜在用户无法理解可用数据湖的定义。通常,那些刚接触大数据的人,甚至是精通Hadoop的老手,都会尝试使用不同的脚本、工具和第三方供应商来组建几个集群并拼凑在一起,这既不符合成本效益,也不可持续。本文,作者将描述数据湖与集群拼凑方式相比的优势是什么,集群如何规划和治理才能构建有效的数据湖。
区域
在数据湖中,区域允许数据的逻辑或物理分离,从而保护整体环境的安全性、有序性和敏捷性。通常,建议企业使用3或4个区域,但可以使用更少或更多区域。通用的4区系统可能包括以下内容:
Transient Zone(瞬态区域)——用于在获取之前短暂保存数据,例如临时副本,流式spool或其他短期数据。
Raw Zone(原始区域)——存放原始数据的区域,该区域敏感数据必须加密,标记化或以其他方式保护。
Trusted Zone(受信任区域)——对原始区域中的数据执行数据质量、验证或其他处理后,它将成为此区域中下游系统的“真实数据来源”,也就是说其下游系统会从该区域获取数据。
Refined Zone(再处理区)——操作和丰富的数据保存在此区域,这用于存储来自Hive或外部工具等的输出,这些工具将写入数据湖中。
这种区域划分可以根据需要适应企业的业务规模、成熟度和特殊用例,但将通过专用服务器或者集群实现物理隔离,通过故意构建目录和访问权限进行逻辑分离,或者两者进行特别组合。在视觉上,这种架构类似于下面的架构。
建立和维护定义明确的区域是创建健康湖泊的重要步骤。同时,了解哪些区域不提供灾难恢复或数据冗余策略也是非常重要的。尽管可以在DR中考虑该问题,但仍然需要投资可靠的底层基础架构以确保冗余和恢复能力。
Lineage
随着新数据源的不断添加以及现有数据源的更新或修改,维护数据集内部关系之间的记录变得更加重要。这些关系就像重命名列一样简单,也可能像连接不同源的多个表一样复杂,每个表本身可能有多个上游转换。在此上下文中,lineage有助于提供跟踪性以了解字段或数据集的来源以及审计跟踪,并了解更改的位置、时间和原因。听起来简单,但是当数据在湖中移动时捕获有关数据的细节非常困难,即使今天部署了一些专门的软件。跟踪的整个过程涉及事务级别(访问数据和做了什么?)以及结构或文件系统级别(数据集和字段之间的关系是什么?)等问题。数据湖中包括数据的批和流处理工具(例如MapReduce和Spark),以及可能操纵数据的任何外部系统,例如RDBMS系统。lineage可填补传统系统的部分空白,特别是随着GDPR等新法规的出现——灵活性和可扩展性是未来管理的关键。
数据质量
在数据湖中,并非所有数据都相同。因此,定义数据源以及管理和使用数据至关重要。通过清理来自各种物联网设备或社交媒体的数据,可以获得很多价值。企业还可以考虑在消费方而不是采购方应用数据质量检查。因为,单个数据质量体系结构可能不适用于所有类型的数据。必须注意的是,如果数据被“清理”,用于分析的结果可能会产生影响。修复数据集中值的字段级数据质量规则可以影响预测模型结果,因为这些修复可以影响异常值。通过比较“数据集的预期与接收大小”或“空值阈值”来衡量数据质量规则是否可用可能更适合此类情况。通常,所需验证的级别受传统限制或已经存在的内部流程影响,在设置新规则之前评估公司的现有流程是必须的。
隐私与安全
健康数据湖的关键组成部分是隐私和安全性,包括基于角色的访问控制、身份验证、授权以及静态和动态数据加密等。从纯数据湖和数据管理的角度来看,最重要的往往是数据混淆,包括标记化和数据屏蔽。应该使用这两个概念来帮助数据遵守最小特权的安全概念。限制数据访问也对许多希望遵守法规的企业具有意义。限制访问有几种形式,最明显的是存储层中区域的大量使用。简而言之,可以配置存储层中的权限,使得以最原始格式访问数据非常有限。由于该数据随后通过标记化和掩蔽(即隐藏PII数据)进行转换,因此可以将对后续区域中的数据访问扩展到更大的用户组。
DLM
企业必须努力发展其数据管理战略,以更有效地保护和服务其数字资产。这涉及投入时间和资源来完全创建生命周期管理策略,并确定是使用扁平结构还是利用分层保护。数据生命周期管理的前提是基于数据创建、使用和存档这一事实。如今,这个前提可能适用于某些交易数据。企业应该了解信息、数据和存储介质的相同点和差异,并能够最大限度地利用不同存储层消除复杂性和成本并释放价值。
结论
就像处于初期阶段的关系数据库一样,近年来Hadoop的应用因缺乏最佳实践而受到影响。企业在考虑将Hadoop用作数据湖时,需要参考尽可能多的最佳实践。利用区域和适当的授权作为数据工作流框架的一部分,为数据转换提供高度可扩展的并行系统。
第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:zhangxuefeng
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。