首页 > 大数据 > 正文

菜鸟数据科学家五大误区

2019-01-09 09:22:11  来源:51CTO

摘要:本文研究了作为数据科学家新手的5个常见错误。是在指导和领导学术界与行业领域的年轻数据科学家方面拥有20多年的经验是由塞巴斯蒂安·福卡德(Dr Sébastien Foucaud)博士指导下的内容。本文旨在帮助你更好地为今后的实际工作做准备。
关键词: 大数据
  你准备好要成为一名数据科学家,积极的参加Kaggle比赛和Coursera的讲座。虽然这一切都准备好了,但是一名数据科学家的实际工作与你所期望的却是大相径庭的
 
  菜鸟数据科学家五大误区
\
  1、Kaggle成才论
\
  Source: kaggle.com on June 30 18.
 
  你通过参加Kaggle比赛,练习了数据科学领域的各项技能。如果你能把决策树和神经网络结合起来那就再好不过了。说实话,作为一个数据科学家,你不需要做那么多的模型融合。请记住,通常情况下,你将花80%的时间进行数据预处理,剩下的20%的时间用于构建模型。
\
  作为Kaggle的一份子对你在很多方面都有帮助。所用到的数据一般都是彻底处理过的,因此你可以花更多的时间来调整模型。但在实际工作中,则很少会出现这种情况。一旦出现这种情况,你必须用不同的格式和命名规则来收集组装不同来源的数据。
 
  做数据预处理这项艰苦的工作以及练习相关的技能,你将会花费80%的时间。抓取图像或从API中收集图像,收集Genius上的歌词,准备解决特定问题所需的数据,然后将其提供给笔记本电脑并执行机器学习生命周期的过程。精通数据预处理无疑会使你成为一名数据科学家,并对你的公司产生立竿见影的影响。
 
  2、神经网络(Neural Networks)无所不能
 
  在计算机视觉或自然语言处理的领域,深度学习模型优于其它机器学习模型,但它们也有很明显的不足。
\
  神经网络需要依赖大量的数据。如果样本很少,那么使用决策树或逻辑回归模型的效果会更好。神经网络也是一个黑匣子,众所周知,它们很难被解释和说明。如果产品负责人或主管经理对模型的输出产生了质疑,那么你必须能够对模型进行解释。这对于传统模型来说要容易得多。
\
  正如詹姆斯·勒(James Le)在一个伟大的邮件中所阐述的那样,有许多优秀的统计学习模型,自己可以学习一下,了解一些它们的优缺点,并根据用例的约束来进行模型的实际应用。除非你正在计算机视觉或自然语言识别的专业领域工作,否则最成功的模型很可能就是传统的机器学习算法。你很快就会发现,最简单的模型,如逻辑回归,通常是最好的模型。
\
  来源:算法来自scikit-learn.org.
 
  3、机器学习是产品
 
  在过去的十年里,机器学习既受到了极大的吹捧,也受到了很大的冲击。大多数的初创公司都宣称机器学习可以解决现实中遇到的任何问题。
\
  来源:过去5年谷歌机器学习的趋势
 
  机器学习永远都不应该是产品。它是一个强大的工具,用于生产满足用户需求的产品。机器学习可以用于让用户收到精准的商品推荐,也可以帮助用户准确地识别图像中的对象,还可以帮助企业向用户展示有价值的广告。
 
  作为一名数据科学家,你需要以客户作为目标来制定项目计划。只有这样,才能充分地评估机器学习是否对你有帮助。
 
  4、混淆因果和相关
 
  有90%的数据大约是在过去的几年中形成的。随着大数据的出现,数据对机器学习从业者来说已经变得越来越重要。由于有非常多的数据需要评估,学习模型也更容易发现随机的相关性。
\
  来源: http://www.tylervigen.com/spurious-correlations
 
  上图显示的是美国小姐的年龄和被蒸汽、热气和发热物体导致的命案总人数。考虑到这些数据,一个学习算法会学习美国小姐的年龄影响特定对象命案数量的模式。然而,这两个数据点实际上是不相关的,并且这两个变量对其它的变量没有任何的预测能力。
 
  当发现数据中的关系模式时,就要应用你的领域知识。这可能是一种相关性还是因果关系呢?回答这些问题是要从数据中得出分析结果的关键点。
 
  5、优化错误的指标
 
  机器学习模型通常遵循敏捷的生命周期。首先,定义思想和关键指标。之后,要原型化一个结果。下一步,不断进行迭代改进,直到得到让你满意的关键指标。
\
  构建一个机器学习模型时,请记住一定要进行手动错误分析。虽然这个过程很繁琐并且比较费时费力,但是它可以帮助你在接下来的迭代中有效地改进模型。参考下面的文章,可以从Andrew Ng的Deep Learning Specialization一文中获得更多关于改进模型的技巧。

第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:zhangmm

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。