2019-01-31 16:43:19 来源:InThirty
前言
很早之前发过一篇关于某拼车平台爬虫的文章,因为工作比较忙,一直没有下文。最近年底稍微空了些,加上碰上春节返乡大潮,刚好再拿过来写一下数据分析的思路。
本次数据样本共13041条,本别采集了北京、上海、广州、深圳、杭州的某一天出行数据,由于手动操作难以保证取样的公平性,所以不能对全部数据结果的准确性做保证,本文以提供思路参考为主,先放一张路线图:
统计结果
好了知道大家比较关心结果,所以先把结果放一放,后面再接着讲分析过程。
乘客性别
先单独把性别拎出来看一下,后面再根据城市进行分析,结果显示,抛开未设置性别的乘客不论,总体来看顺风车的用户群中,男性(占比49.39%)还是多于女性(占比31.55%)的。毕竟跨城顺风车,大过年的,女性乘客对于安全性的忧虑还有要有的。
城市订单
真实数据的话订单数量应该是深圳 > 北京 > 广州 > 上海 > 杭州,但是同一个城市内的乘客性别比例应该还是具有一定的参考价值的,可以看到北京、上海、深圳的女性乘客数量占比都是高于男性的。
客单价
原本是想比较一下平均路程长度,但是想想这个事情太折腾了,由于平台主要还是依靠路程来计算拼车费用的,所以通过计算客单价的话大概也能反映一下平均形成长度(我猜的,然后结果是这样的,没想到广州是最高的,也可能是我统计错误
哪里乘客最壕
有时候有些偏远地区订单或者顺路司机少,乘客会加价希望司机接单,于是统计了一下各城市加价订单的占比和平均的加价额度,得出如下结果:
占比最高的城市是深圳,平均加价额度最高的城市也是深圳,看来深圳的小哥哥小姐姐们的确出手阔错,然而加价比例最低的是北京,不过这也不能说明帝都人民不壕气,可能就是人家繁华,司机多。
返乡路线图
最后放几张返乡的路线图
北京
上海
广州
深圳
杭州
杭州明显有别与其它几个城市,一个是杭州的数据样本多,另外一个平台上杭州黄牛多,那些最远的单子就是黄牛广告单
爬虫思路
注册成为司机,利用mitm抓包存储拼车单
统计思路
数据的话我是通过本地Mongodb存储,所以直接用python操作Mongodb数据
Pymongo
关于Mongodb数据库的连接,直接上代码:
以上代码的意思就是连接本地Mongodb-spring数据库-orders文档集合
Pyecharts
Pyecharts(http://pyecharts.org)是大名鼎鼎的Echarts的Python可视化图表库,用起来挺顺手的,而且文档规范,基本上可以零门槛入门,具体实现请移步文档。
这里介绍一下关于Pyecharts的图表样式配置,为了保持各图表的样式统一(偷懒),Pyecharts提供了一个Style类,可用于在同一个图或者多个图内保持统一的风格
这样,就创建了一个Geo地理坐标系图表
代码解读
因为全部代码有点长,所以抽了一段举个例子,主要思路就是从Mongodb取出指定数据,或者通过$group管道对数据进行处理,最后通过pyecharts生成相应的图表,呈现
后记
这是一篇迟到很久的文章,本来没打算再写,但是总觉得下半部分没写完心里有个结,所以还是抽时间补上。另外作为一个非专业技术人员,多记多练免得过几天自己就忘了。
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。