首页 > 大数据 > 正文

数据科学太难?这些陷阱请避开,正能量很重要!

2019-02-26 11:00:30  来源:简书

摘要:无论你怎样学习数据科学,你总会遇到一些会扼杀积极性的挑战,碰上一些让你觉得自己很渺小而无能为力的工作,或者听到恶魔在你耳边低语,“这太难了,放弃吧。”但你不必独自面对这个难题。这篇文章将会提到一些打击学习积极性的陷阱。
关键词: 数据
  很多人可能都会有这样的疑问:网上有这么多可用的资源,为什么保持学习数据科学的积极性这么难呢?
 
  无论你怎样学习数据科学,你总会遇到一些会扼杀积极性的挑战,碰上一些让你觉得自己很渺小而无能为力的工作,或者听到恶魔在你耳边低语,“这太难了,放弃吧。”
 
  但你不必独自面对这个难题。这篇文章将会提到一些打击学习积极性的陷阱。希望你在了解了这些陷阱之后,走向数据科学的职业道路会更加平坦。
 
  确保你适合学习数据科学后再开始学习
 
\
 
  数据科学家这一职业很吸引人,薪水高、工作有趣、受人尊崇。因此许多人想做数据科学家。
 
  对大数据以及人工智能概念都是模糊不清的,该按照什么线路去学习,学完往哪方面发展,想深入了解,想学习的同学欢迎加入大数据学习qq群:458345782,有大量干货(零基础以及进阶的经典实战)分享给大家,并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系 。
 
  但是,即使你对数据科学很感兴趣,如果你讨厌它的日常任务以及那种感受,那就很难保持积极性了。
 
  对大多数初学者来说,在真正进入到“做”的阶段,即构建全面的数据科学项目之前,可能要经过数个月的学习。这时候你意识到自己讨厌这一过程的话,对自身将是一个很沉重的打击。
 
  如果你选择从事数据科学家这一职业,你要适应以下的任务和这些任务给你的感受。
 
  感受:
 
  学习永无止境的感受。
  超出能力范围或被压得喘不过气的感受。
  一次次的失败才迎来一次成功的感受。
  花费了数周心血的项目失败了或被忽视的感受。
 
  任务:
 
  在完全没有任何基础上自学的技能。
  花几十个小时解答一个看似简单的问题。
  将自己与(看似)更成功的人作比较。
  与不了解(不关心)数据科学的人谈论数据科学。
  做准备占95%,执行只占5%的工作。
  做很多不那么吸引人的工作(数据库创建、数据再加工……)。
  敲代码……无穷无尽地敲代码。
 
  建议:学习之前要做好研究
 
  数据科学家这一职业很棒,但同时也能给人带来巨大的打击。
 
  在开始学习之时做一点研究,坚持完成数据科学学习的概率会大大增加。
 
  学会处理焦虑
 
  做研究时你会发现一个不幸的事实:要做一名数据科学家,你要精通很多工具,会许多技能,这会让人觉得成为数据科学家的希望很渺茫。
 
  你可能会开始问自己:我要不要再读个博士?没有工作经验的话,我怎么才能学到这些技能?我能够学会这些东西吗?
 
  学习数据科学之初,你会觉得很焦虑,压力大。这很正常,每个初学者都会这样。但要记得刚开始学习的这段时间对于你未来是否能成功至关重要。你在最初几周里养成的学习习惯会一直延续下去,并决定你在之后的学习中会如何应对压力和焦虑带来的负面影响。
 
  如果你能从一开始就找到处理压力和焦虑的健康的方法,那么随着时间的推移,你学习数据科学的信心将会更坚定,积极性会更强。
 
  要提醒你的是,在刚开始学习的这段时间内,你绝对不能采用不健康的方式来应对负面影响。
 
  什么方式健康什么不健康,很大程度上因人而异。以下是一些不健康的应对压力的方式,不要踩雷。
 
  对学习感到不知所措时,不要购买全面的课程或教科书
 
  要是你真的购买了全面的学习课程或者教科书,学习就好像变成了别人交给你的苦差事。更糟的是,因为没有努力去规划自己要学的东西,你便不知道学习某种技能或概念的原因是什么。结果如何呢?一旦你购买了网上课程,你的学习积极性就迅速下降。
 
  不要这样做的原因:即使你能从别人的课程中学到很多东西,还是建议你不要这样做。为什么?因为在数据科学的学习过程中,你学到的最重要的技能便是你能够自学。
 
  在自学过程中,你可以发现自己技能中的漏洞,学习新技术以填补漏洞,并制定一份可行的计划来学习这些技能。如果仅通过现成的课程来学习,那你就会少这方面的经验就会很欠缺。
 
  随着时间的推移,情况会变得更糟。当你真的成为数据科学家时,你可能会遇到一个十分独特的任务,对于那个领域的问题,你完全没有任何经验。这时候如果慕课或教科书上没有你需要学习的技能,那你的日子就很难过了。
 
  在压力大时不要推迟学习或指定某一天来学习
 
  初学者可能会犯的最大错误是推迟学习。如果你觉得太忙了所以推迟,那没关系。但如果你想学有所成,就要每天留出时间来学习。如果你没有每天练习和学习,你的学习积极性很快便会减弱,最终你会对这份本可施展你的抱负的职业失去兴趣。
 
  不要这样做的原因:成为数据科学家的过程是一场马拉松,而不是短跑。这个职业所需的广泛技能只有通过长期不懈的努力学习才能获得。如果你试图在短时间内学会所有技能,最终只会耗尽自己的精力,失去继续学习下去的积极性。
 
  更糟糕的是,如果你有时间就学,没时间就不学,那你可能永远也不会真正踏上学习的旅程。如果你真的这样做了,你的大脑会形成一个观念,认为有时间的时候才能学习。对于数据科学来说,有这种想法便意味着你的职业生涯快要终结了。
 
  建议:尽早养成健康的学习习惯
 
  不管你是想要在事业上有所作为的全职工作者,还是想要从事自己感兴趣的职业的在校学生,你们都要养成一个健康的学习习惯来应对压力。
 
  学习之初可以养成的一些健康的习惯:
 
  每天留出时间来学习新东西。
 
  加入数据科学的学习社群,你会发现很多人和你一样有焦虑感。
 
  如果你在学习中感到疲惫和焦虑,那就抽空用最近学到的知识来做个项目。这是很好的减压方式,可以让你回顾学习数据科学的初衷。
 
  学会应对学习时的不知所措
 
  真正开始学习数据科学的技能以后,你会发现要关注的东西很多。这时候,你可以列出未来半年里想要学习的8到12个技能。 看看斯瓦米·钱德拉赛卡兰的数据科学技能地图,你就明白了。
 
  第一次看到这张图的时候,很多人可能会被要学习的技能之多吓到。一个人怎么能自学学会这些技能呢?不幸的是,这种不知所措的感觉会一直伴随着你。
 
  当你感觉已经掌握了一个概念或技能的时候,马上又要在学习列表上加上五项新技能。随着时间的推移,你需要学习的技术变得更新,更复杂,情况也就变得更糟。
 
  学习的重负令你不知所措时,如果你没有应对的计划,那么可能有两种结果。
 
  第一种结果:你开始感到非常焦虑,因为需要学习的技能太多。你越焦虑就越难专注于一件事。你可能会花上几个月的时间在不同的技能之间来回转换,拼命地想一次学会所有的技能,最后一项技能也没掌握时,你就会很沮丧。
 
  第二种结果:尚未掌握的技能太多,把你压得喘不过气来。这种情况继续下去的话,会严重影响到学习积极性。你会把学会的和没学会的技能进行对比,然后一天比一天沮丧。这时,你就会觉得自己取得的任何进步都毫无意义,自己不可能成为一名数据科学家。
 
  任何一种情况变得越来越严重时,学习数据科学的积极性也会被慢慢消磨掉。但别担心,有了详尽周到的学习计划和学习的重点,我们就可以在学习之初解决这些难题。
 
  建议:有条理地学习,循序渐进
 
  数据科学本身涉及的领域很广泛,想掌握这众多技能的唯一方法就是循序渐进,一次只学一种技能。无论你想怎么学习数据科学,都要制定线型的、有条理的学习计划,一次只集中精力学习一种技能,这可以让你在面对众多要学习的技能时更游刃有余。
 
  如果你想制定自己的学习计划,你可以构建斯瓦米那样的技能地图。但是,看到要学习技能那么多,你可能会觉得喘不过气来。这正是循序渐进的优点所在。
 
  应对学习重压的最佳方法是设定短期目标,将注意力集中在最重要的技能上。原则是——任何时候都要列出下个月要掌握的最重要的三个技能。

第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:pingxiaoli

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。