“大数据”已经过时了吗
“大数据”已经过时了吗
2019-03-11 11:55:38 来源:简书抢沙发
2019-03-11 11:55:38 来源:简书
摘要:“大数据”与其说是过时了,倒不如说还没有真正开始。只要摩尔定律还在生效,每过18个月电子技术就要翻一番的话,那么大数据时代就只能在路上。
关键词:
大数据
“大数据”与其说是过时了,倒不如说还没有真正开始。只要摩尔定律还在生效,每过18个月电子技术就要翻一番的话,那么大数据时代就只能在路上。这是因为,随着计算技术的不断进步,存储成本的不断降低,人们有越来越多的资本去收集更多的数据,进行更颗粒化的分析。然而,在传统的数据分析中,当数据量大到一定的程度时,分析结果就不会进一步优化了。
举一个最简单的线形分类的例子,对于平面上一堆被零散放置的两种球(红球和蓝球),通过画一条直线尽可能好的将两类球分开,然后对于新的放进来的球(可能被包起来),单凭直线的划分去判断新球的颜色。很容易就可以看出,由于我们分类的模型相当简单(只有一条直线),那么海量的数据可能对于提升模型精度的意义不是太大,这也是传统数据科学遇到的问题。机器学习(数据科学主要的分析手段)方法遇到的主要瓶颈也在这里,在这种情况下,更多的数据是没有更大意义的。
深度学习使得这一瓶颈得到突破,这一学习方法简单来说就是通过多层、多个计算算子进行分析,从而可以建立足够复杂的模型,以提高数据分析能力。这种方法也被称为神经网络,因为每个算子就像神经一样微小而彼此相连,当然这一科学本身并没有仿生学的意义,只是仅仅看上去与神经相类似而已。在这种学习方法下,更大的数据量通常可以带来更高的精度,而且还存在精度从量变到质变提升的可能,因此数据科学家们对数据的需求也突然增大,大数据科学也因此应运而生。
对深度学习的诟病之一,是由于模型开始复杂起来,人们没有办法再像一条直线那样容易理解机器分类的标准规范。当存在理解的黑洞时,机器学习在一部分人眼中也就成了巫术。比如,给模型提供一批好的作文和不那么好的作文,经过学习,机器可以对新的作文进行评分,这些评分仅仅是根据前面提供的素材学习而来的,但是机器无法给出详细的评分理由,这就让结果的信任度大打折扣。不过,近来有关于深度学习算法原理的解释,这可能是把深度学习从“巫术”变成有理论支撑的科学的第一步。
无论怎么说,随着深度学习的快速发展,大数据应该只是仅仅拉开了幕布一角,远没有到全面降临的时刻。而随着深度学习、人工智能(后者往往是以前者为基础的)的快速发展,对数据需求的量级也会越来越多,到那时,可能才是真正的“大数据时代”
第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:baiyl
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。