2010-06-09 13:52:50 来源:天极网
数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策。
数据仓库是一个环境,而不是一件产品,提供用户用于决策支持的当前和历史数据,这些数据在传统的操作型数据库中很难或不能得到。数据仓库技术是为了有效的把操作形数据集成到统一的环境中以提供决策型数据访问,的各种技术和模块的总称。所做的一切都是为了让用户更快更方便查询所需要的信息,提供决策支持。
一、数据仓库拥有的四个特点
1、面向主题。操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织。主题是一个抽象的概念,是指用户使用数据仓库进行决策时所关心的重点方面,一个主题通常与多个操作型信息系统相关。
2、集成的。面向事务处理的操作型数据库通常与某些特定的应用相关,数据库之间相互独立,并且往往是异构的。而数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。
3、相对稳定的。操作型数据库中的数据通常实时更新,数据根据需要及时发生变化。数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。
4、反映历史变化。操作型数据库主要关心当前某一个时间段内的数据,而数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。
二、数据仓库的组成
数据仓库数据库
是整个数据仓库环境的核心,是数据存放的地方和提供对数据检索的支持。相对于操纵型数据库来说其突出的特点是对海量数据的支持和快速的检索技术。
数据抽取工具
把数据从各种各样的存储方式中拿出来,进行必要的转化、整理,再存放到数据仓库内。对各种不同数据存储方式的访问能力是数据抽取工具的关键,应能生成COBOL程序、MVS作业控制语言(JCL)、UNIX脚本、和SQL语句等,以访问不同的数据。数据转换都包括,删除对决策应用没有意义的数据段;转换到统一的数据名称和定义;计算统计和衍生数据;给缺值数据赋给缺省值;把不同的数据定义方式统一。
元数据
元数据是描述数据仓库内数据的结构和建立方法的数据。可将其按用途的不同分为两类,技术元数据和商业元数据。
技术元数据是数据仓库的设计和管理人员用于开发和日常管理数据仓库是用的数据。包括:数据源信息;数据转换的描述;数据仓库内对象和数据结构的定义;数据清理和数据更新时用的规则;源数据到目的数据的映射;用户访问权限,数据备份历史记录,数据导入历史记录,信息发布历史记录等。
商业元数据从商业业务的角度描述了数据仓库中的数据。包括:业务主题的描述,包含的数据、查询、报表;
元数据为访问数据仓库提供了一个信息目录(informationdirectory),这个目录全面描述了数据仓库中都有什么数据、这些数据怎么得到的、和怎么访问这些数据。是数据仓库运行和维护的中心,数据仓库服务器利用他来存贮和更新数据,用户通过他来了解和访问数据。
访问工具
为用户访问数据仓库提供手段。有数据查询和报表工具;应用开发工具;管理信息系统(EIS)工具;在线分析(OLAP)工具;数据挖掘工具。
数据集市(DataMarts)
为了特定的应用目的或应用范围,而从数据仓库中独立出来的一部分数据,也可称为部门数据或主题数据(subjectarea)。在数据仓库的实施过程中往往可以从一个部门的数据集市着手,以后再用几个数据集市组成一个完整的数据仓库。需要注意的就是再实施不同的数据集市时,同一含义的字段定义一定要相容,这样再以后实施数据仓库时才不会造成大麻烦。
数据仓库管理:安全和特权管理;跟踪数据的更新;数据质量检查;管理和更新元数据;审计和报告数据仓库的使用和状态;删除数据;复制、分割和分发数据;备份和恢复;存储管理。
信息发布系统:把数据仓库中的数据或其他相关的数据发送给不同的地点或用户。基于Web的信息发布系统是对付多用户访问的最有效方法。
三、设计数据仓库的九个步骤
1)选择合适的主题(所要解决问题的领域)
2)明确定义fact表
3)确定和确认维
4)choosingthefacts
5)计算并存储fact表中的衍生数据段
6)roundingoutthedimensiontables
7)choosingthedurationofthedatabase
8)theneedtotrackslowlychangingdimensions
9)确定查询优先级和查询模式。
技术上
硬件平台:数据仓库的硬盘容量通常要是操作数据库硬盘容量的2-3倍。通常大型机具有更可靠的性能和和稳定性,也容易与历史遗留的系统结合在一起;而PC服务器或UNIX服务器更加灵活,容易操作和提供动态生成查询请求进行查询的能力。选择硬件平台时要考虑的问题:是否提供并行的I/O吞吐?对多CPU的支持能力如何?
数据仓库DBMS:他的存储大数据量的能力、查询的性能、和对并行处理的支持如何。
网络结构:数据仓库的实施在那部分网络段上会产生大量的数据通信,需不需要对网络结构进行改进。
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。