首页 > 大数据 > 正文

数据仓库技术的发展及体系结构

2011-11-04 10:34:44  来源:CIO时代网

摘要:传统的数据库技术是以单一的数据资源,即数据库为中心,进行事务处理工作的。然而,不同类型的数据有着不同的处理特点,以单一的数据组织方式进行组织的数据库并不能反映这种差异,
关键词: 数据库
    1 数据仓库技术的发展及概念

    传统的数据库技术是以单一的数据资源,即数据库为中心,进行事务处理工作的。然而,不同类型的数据有着不同的处理特点,以单一的数据组织方式进行组织的数据库并不能反映这种差异,满足不了现代商业企业数据处理多样化的要求。总结起来,当前的商、世企业数据处理可以大致地划分为2大类:操作型处理和分析型处理。操作型处理也叫事务型处理,主要是为企业的特定应用服务的(这是目前最为常用的),分析型处理则用于商业企业管理人员的决策分析,这种需求既要求联机服务,又涉及大量用于决策的数据,传统的数据库系统已经无法满足,具体体现在:

    1)历史数据量大;

    2)辅助决策信息涉及许多部门的数据,而不同系统的数据难以集成;

    3)由于访问数据的能力不足,它对大量数据的访问能力明显下降。

    数据仓库技术的出现为解决上述问题提供了新的思路。数据仓库的创始人Inmon指出:“数据仓库是面向主题的、集成的、稳定的、随时间变化的数据集合,用以支持经营管理中的决策制定过程”。它从大量的事务型数据中抽取数据,并将其清理、转换为新的存储格式,即为决策目标把数据聚合在一种特殊的格式中,作为决策分析的数据基础,从而在理论上解决了从不同系统的数据库中提取数据的难题。同时,利用联机分析处理(OLAP)技术可以对数据仓库提供的数据进行深入加工。

    2 企业数据仓库的体系结构

    一个典型的企业数据仓库系统通常包含数据源、数据存储与管理、OLAP服务器以及前端工具与应用4个部分。

    1)数据源。

    数据源是数据仓库系统的基础,是整个系统的数据源泉。通常包括企业内部信息和外部信息。内部信息包括存放于企业操作型数据库中(通常存放在RD-BMS中)的各种业务数据,外部信息包括各类法律法规、市场信息、竞争对手的信息以及各类外部统计数据及各类文档等。

    2)数据的存储与管理。

    数据的存储与管理是整个数据仓库系统的核心。在现有各业务系统的基础上,对数据进行抽取、清理,并有效集成,按照主题进行重新组织,最终确定数据仓库的物理存储结构,同时组织存储数据仓库元数据(具体包括数据仓库的数据字典、记录系统定义、数据转换规则、数据加载频率以及业务规则等信息)。按照数据的覆盖范围,数据仓库存储可以分为企业级数据仓库和部门级数据仓库(通常称为“数据集市”,Data Mart)。数据仓库的管理包括数据的安全、归档、备份、维护、恢复等工作。这些功能与目前的DBMS基本一致。

    3)OLAP服务器。

    对分析需要的数据按照多维数据模型进行再次重组,以支持用户多角度、多层次的分析,发现数据趋势。

    4)前端工具与应用。

    前端工具主要包括各种数据分析工具、报表工具、查询工具、数据挖掘工具以及各种基于数据仓库或数据集市开发的应用。其中数据分析工具主要针对OLAP服务器,报表工具、数据挖掘工具既针对数据仓库,同时也针对OLAP服务器。

第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:fanwei

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。