2012-05-25 11:14:02 来源:T客在线
这都是信口开河。如果你能给我细致的数据:例如一个人发的Twitter文和此人的交易记录,让我可以看到他们如何互动,这是另一回事。但是,现在不是这么个情况。人们太专注于性感的社交媒体上的东西,追捧的过了头。
用数据营销,用数据挣钱,一直是互联网圈子里的一个神话,甚至催生了很多专门的职位,但是到目前为止,除了淘宝经常发布的中国内衣尺寸报告(可以让大家很开心)和垃圾短信外,似乎并没有什么成功的案例,为什么会出现这种情况呢,科技创业进行了分析。
以下为全文。
这段时间,没有什么概念比“大数据”更能打动企业家和投资者了。持这一想法的人认为,我们现在能从人们的网上行为和移动电话上收集到大量信息,这使得我们能越来越具体的预测他们的行为以及购买倾向。
但这些假设真的成立吗?彼得·费德就是怀疑者之一。他是美国宾夕法尼亚大学沃顿商学院的消费者分析计划(Customer Analytics Initiative)的负责人之一,同时也是该校一名市场营销学教授。费德在接受记者李·戈麦斯的采访时谈到了一些他的顾虑。
科技创业: 对于技术群体中流行的“大数据”的观点,您会如何描述?
费德:“多多益善”。如果你可以给我更多的客户数据--如果你能获取到他们行为的更多方面、他们与别人的联系、他们的兴趣所在等等--我可以很准确地判断此人的一切。我可以预测他们会买什么、什么时候买、以什么价钱买,以及通过什么渠道买。
那么这种观点到底哪儿不对?
这让我想起了很多在15年前发生在CRM(客户关系管理)领域的事情。当时的想法是:“哇,我们可以开始收集所有这些不同的交易和数据信息,然后,伙计,想想我们能做出的所有预测吧。”但现在随便问问别人,当说到“CRM“时他会想到什么,你会听到“挫折感”、“灾难”、“昂贵”和“失控”。它实际上成了IT界一场轰动的竹篮打水活动。而现在恐怕我们的“大数据”也走的是这条道路。
[page] 近来似乎有不少企业都承诺,可以利用一些Twitter上的数据流或Facebook上的评论来做出一些预测:预测股票价格,或产品的市场接受度等等。
这都是信口开河。如果你能给我细致的数据:例如一个人发的Twitter文和此人的交易记录,让我可以看到他们如何互动,这是另一回事。但是,现在不是这么个情况。人们太专注于性感的社交媒体上的东西,追捧的过了头。
有人说,你描述的这种对数据的崇拜,在与移动计算相关的创业公司中很常见。你认为这是真的吗?如果真是这样,这是不是意味着,此后一两年内,会有很多的企业家和风投人要失望了?
每种新的可追踪技术都会引起一场“数据崇拜”,从90年代的电子邮件和网络浏览一直到如今的移动通信和地理定位服务,都是如此。太多的人认为手机是一个“全新的世界”,能提供过去不可想象的对行为的绝妙理解方式。可有许多基本行为模式在这些平台上都惊人的一致。这不代表它们乏味或不重要。但是,有一些基本方法可以帮助我们在移动世界里理解和预测这些行为(因而需要关键数据来完成这些任务),这些方法并不像大家想象的那么激进。
但移动计算不是可以提供某些特别有用的数据吗?比如一个人的位置信息,比如你在某个时刻正在商店购物这一事实。这样的信息似乎是非常有价值的。
一点不错。我不是一个彻底的数据“勒德分子”(Luddite,害怕或者厌恶技术的人)。毫无疑问,新技术将有能力提供许多从前获得不到的真正有用的数据。关键的问题是:这样的数据,我们到底需要多少呢?例如,我们需要一个购物者每分每秒的位置信息吗?把观察到的这一系列情况与其他行为数据(例如,购物者仔细看了哪些商品)整合起来,会不会更有帮助?还是只是因为能够知道这些感觉很好?在顾客的行程结束后,这些数据我们应该保存多少?
一个真正的数据学家会有很好的感觉来回答这些问题,并把部分眼光放在实际决策上。但是,大数据的狂热爱好者可能会说,“全保存下来,你永远不知道什么时候会派上用场,也许将来进行数据挖掘时用得着。”这就是“老派”和“新派”分析师之间的区别。
你应该不反对机器学习吧?这种技术为语言翻译等领域带来了革命性的进步,还带来了像Hadoop这样的新的数据库工具。
[page] 我要确保我的博士生们学习所有这些新兴的技术,因为他们都对某些任务至关重要。机器学习非常善于分类,善于把不同东西放在不同的桶里。如果我想知道这个人下次会买哪个品牌的东西,或者他将投票给共和党还是民主党,没有任何东西比机器学习更适合了,而且它始终在不断进步中。
问题是有很多不那么容易“分类”的决策,例如,当要决定“何时”而不是“哪一个”的时候。机器学习在执行这些任务时可能会发生戏剧性地崩溃。掌握机器学习和数据库管理之外的多组技能,是非常重要的。但许多搞“大数据”的人不知道自己的盲点所在。
你似乎认为,有些数据学方面的最出色工作在很久以前就完成了。
行为预测的黄金时代出现在40或50年前,当时的数据非常稀缺,企业不得不尽可能的从有限的数据中挖掘出尽量多的启发。
想想莱斯特·旺德曼(Lester Wunderman),他在20世纪60年代创造了那句“直销”。他搞的是真正的数据学。他说过,“让我们把所知道的一切关于这些消费者的内容写下来。他们买了什么,我们送了什么商品目录,他们为哪些商品买了单”。这是很困难的,因为他没有一个Hadoop集群为他干活。
那他发现了什么?
他(和其他老派的直销商)留给我们的是强大依旧的RFM分析法:最近一次消费(R),消费频率(F),和消费金额(M)。
其中“F”和“M”是很浅显的,并不需要什么科技。“R”的部分最有趣,因为它并不那么显而易见。最近一次消费或最后一次交易的时间,甚至不见得应该位列这三大关键测量值之一,更别说名列榜首了。但研究发现,最近有过购买经验的客户,即使买的不多,也比很久不活跃的客户更有价值。这非常令人惊讶。
有些古老的模型真的很惊人,即使到了今天也是如此。向任何从事直销的人询问RFM,他们都会说:“说点我不知道的吧。”但如果你问任何一个电子商务业的人,他们很可能会不知道你在说什么。或者他们会使用很多大数据,并最终重新发现一套新的RFM,而且可能还不如原版好用。
大数据和数据学家看上去好像很受尊敬。
[page] 在投资界有“技术图表派”。他们眼看着(股票)价格弹上去又跌下来,落到所谓30块钱的“阻力位”或20块钱的“支撑位”。这些人光盯着数据,却并没有为这些变化和活动的原因提出一个基本解释--比如,其实股价的变化和公司的管理质量有关。
在金融学者中,图表派往往被视为庸医。但很多搞大数据的人和他们完全一样。他们说:“我们只是盯着数据寻找模式,然后在发现模式之后再采取进一步行动。”简言之,我们称之为“数据学”的东西里没什么真正的科学含量,这是一个很大的问题。
有没有哪个行业在这方面做得比较好的?
有,保险业。精算师可以很有信心的说出跟你特征相同的人中,能活到80岁以上的人的比例。但是,他们绝对不会预测你何时离世。他们知道界限在哪里。
哪怕对过去的行为了如指掌,我们也往往没有足够的信息来对未来做出有意义的预测。事实上,我们掌握的数据越多,就会生出越多虚假的信心。我们的预测准确率不仅不会完美,还将低的出奇。作为科学家和商人,最重要的是了解我们的局限所在,并用使用最合适的科学来填补空白。全世界的所有数据都无法为我们实现这一目标。
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。