首页 > 大数据 > 正文

商务智能体系介绍——数据挖掘相关理论

2012-08-24 10:53:53  来源:万方数据

摘要:数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的和随机的数据中,提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。
关键词: 数据挖掘

    信息时代的到来,使得人们在实践中积累的数据越来越多。大量信息给人们带来方便的同时也带来一大堆问题,如信息过载,难以消化;信息形式不一致,难以统一处理;信息真伪难辨等等,导致了“信息爆炸而知识缺乏”、“信息孤岛”等现象。激增的数据背后隐藏着许多重要的信息,人们希望能够对其进行更高层次的分析,发现数据中存在的关系和规则,根据现有数据预测未来的发展趋势,获得更准确全面的信息帮助管理层决策。面临着这些新问题和挑战,人们开始考虑和解决如何舍弃那些不必要的信息,从大量的数据中提取有用的信息,提高信息的利用率,数据挖掘技术此时应运而生。


    数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的和随机的数据中,提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。数据挖掘是一门广义的交叉学科,它汇聚了不同领域尤其是数据库、人工智能、数理统计、可视化、并行计算等方面的知识。数据挖掘技术从一开始就是面向应用领域,它不仅是面向特定数据库的简单检索查询调用,而且,要对数据进行微观、中观乃至宏观的统计、分析、综合和推理,以指定实际问题的求解,企图发现事件间的相互关联,甚至利用已有的数据对未来的活动进行预测。

    图1 数据挖掘的流程

    图1 数据挖掘的流程


    数据挖掘的任务是从大量数据中发现知识,可分为描述性挖掘,隐藏性挖掘和预测性挖掘三类,如图2所示。描述性挖掘是刻画出数据仓库中数据的某一特性,解释发现了什么;隐藏性挖掘找出以前无法探知,隐藏于业务数据中的信息,解释为什么;预测性挖掘则是在但前数据上进行推理,做出预测,解释将会发生什么。


    数据挖掘与传统的数据分析(如查询、报表、联机应用分析)的本质区别是数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识数据挖掘所得到的信息应具有事先未知,有效和可实用三个特征。先前未知的信息是指该信息是预先未曾预料到的,即数据挖掘是要发现那些不能靠直觉发现的信息或知识,甚至是违背直觉的信息或知识。

    图2 数据挖掘类型

    图2 数据挖掘类型


    数据挖掘方法有很多种,其中比较典型的有分类、关联、序列模式、聚类等,本文在后面将详细介绍其分析模式及算法。


第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:fanwei

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。