2012-09-20 09:55:32 来源:CIO时代网
据IDC预测,未来十年全球大数据将增加50倍。而仅在2011年,全球就产生了1.8ZB(也即1.8万亿GB)的大数据。毫无疑问,大数据将挑战企业的存储架构及数据中心基础设施等,也会引发云计算、数据仓库、数据挖掘、商业智能等应用的连锁反应。
大数据引发三重挑战
具体到企业而言,其面临的最直接的挑战就是企业的基础架构是否适应大数据管理和分析的需要,尤其是一旦要从大数据中查找或者分析出有价值的信息,那大数据的处理效率就成为了关键。而即使是传统的结构化数据,其对处理速度的要求也越来越高。以银行业为例,伴随着银行网点、ATM机的多点布局,再加上越来越多的新兴业务转移到互联网上,使得银行不得不面对无时无刻无处不在的数据处理响应需求。
影响数据处理速度的因素很多,归结起来主要有计算、存储和网络三大方面的因素。计算依靠服务器来实现,其CPU的主频、内存的容量和I/O带宽,都会影响到运算速度。尤其是服务器整体表现出来的性能,将会是影响大数据处理的关键因素。此外,有些企业喜欢采用x86集群或者分布式计算来对大数据进行处理,但是各个计算节点间的调用和处理器使用效率,亦成为影响数据处理快慢的因素。
存储方面,传统的存储系统已经成为数据库处理的瓶颈,这些制约因素包括存储系统到数据库的带宽限制、存储阵列的内部瓶颈等。数据带宽已经严重地限制了数据库的性能,而随机I/O的瓶颈限制了OLTP(联机事务处理)应用的性能。网络带宽涵盖了服务器和存储系统间的带宽、终端和主机间的带宽。假如采用集群或分布式系统,还需要考虑节点之间的带宽。
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。