2013-02-26 15:00:25 来源:互联网
随着移动互联网、物联网、云计算等的快速发展,及视频监控、智能终端、应用商店等的快速普及,全球数据量出现爆炸式增长。即使在遭遇金融危机的2009年,全球信息量也比2008年增长62%,达到80万PB(1015字节),2010年增至120万PB。据IDC预测,至2020年全球以电子式形存储的数据量将达32ZB(1021字节)。以120万PB数据为例,如果将其刻录在DVD上,再将这些盘片堆叠起来,可从地球到月球垒一个来回!
在此背景下,电信运营商在其网络无休止扩容的同时,却面临“增量不增收”的困境;而一些采用“数据驱动型决策”模式经营的公司,则可将其生产力提高5%~6%。因此,有必要深入研究大数据时代(Big Data Era)的挑战、价值与务实应对策略。
1 大数据时代的基本特征
据统计,2010年以互联网为基础所产生的数据比之前所有年份的总和还要多;而且不仅是数据量的激增,数据结构亦在演变。Gartner预计,2012年半结构和非结构化的数据,诸如文档、表格、网页、音频、图像和视频等将占全球网络数据量的85%左右;而且,整个网络体系架构将面临革命性改变。由此,所谓大数据时代已经来临!
对于大数据时代,目前通常认为有下述四大特征,称为“四V”特征:
(1)量大(Volume Big)。数据量级已从TB(1012字节)发展至PB乃至ZB,可称海量、巨量乃至超量。
(2)多样化(Variable Type)。数据类型繁多,愈来愈多为网页、图片、视频、图像与位置信息等半结构化和非结构化数据信息。
(3)快速化(VelocityFast)。数据流往往为高速实时数据流,而且往往需要快速、持续的实时处理;处理工具亦在快速演进,软件工程及人工智能等均可能介入。
(4)价值高和密度低(Value HighandLowDensity)。以视频安全监控为例,连续不断的监控流中,有重大价值者可能仅为一两秒的数据流;360°全方位视频监控的“死角”处,可能会挖掘出最有价值的图像信息。
2 大数据时代面临的挑战
(1)运营商带宽能力与对数据洪流的适应能力面临前所未有的挑战,管道化压力化解及“云-管-端”的有效装备也均面临新挑战。
(2)大数据的“四V”特征在数据存储、传输、分析、处理等方面均带来本质变化。数据量的快速增长,对存储技术提出了挑战;同时,需要高速信息传输能力支持,与低密度有价值数据的快速分析、处理能力。
(3)海量数据洪流中,在线对话与在线交易活动日益增加,其安全威胁更为严峻;而且现今黑客的组织能力、作案工具、作案手法及隐蔽程度更上一层楼,典型的有APT(Advanced Persistent Threat,高级持续性安全威胁)。
(4)大数据环境下通过对用户数据的深度分析,很容易了解用户行为和喜好,乃至企业用户的商业机密,对个人隐私问题必须引起充分重视。
(5)大数据时代的基本特征,决定其在技术与商业模式上有巨大的创新空间,这将对可持续发展起关键作用。
(6)大数据时代的基本特征及安全挑战,对政府制订规则与监管部门发挥作用提出了新的挑战。
[page] 3 大数据带来的价值
(1)利用大数据特征,借助云计算等有效工具,深度挖掘流量与数据价值,可帮助运营商实施好流量经营,减轻管道化风险,发扬“云-管-端”的智能管道的威力。
(2)多业务环境下掌握用户体验效果尤为重要,可从海量用户数据中深度分析、挖掘出用户的行为习惯和消费爱好,以实施精准营销及网络优化,掌控数据增值的“金钥匙”。
(3)掌握好大数据的存储、分类、挖掘、快速调用和决策支撑,并应用于企业的日常运营、维护及战略转型中,成为企业可持续发展、维持竞争优势的当务之急与重要途径。
(4)充分利用对大数据的分析、挖掘,可帮助找到隐蔽性极强的APT之类的安全威胁,助力信息安全部门找到应对新型安全威胁的有效途径。
(5)通过对公共大数据的分析、挖掘与利用,可减少欺诈行为及错误数据的负面作用、追收逃税漏税及刺激公共机构生产力等,帮助政府节省开支。例如英国政府即通过此途径节省大约330亿英镑/年。
4 大数据时代的应对策略
(1)大数据时代应以智慧创新理念融合大数据与云计算,在大数据洪流中提升知识价值洞察力,实施高效实时个性化运作,建立有效增值的商业模式,确保应对APT之类的新型安全威胁。
(2)电信运营商转型中流量经营已成共识,即以智能管道与聚合平台为基础,以扩大流量规模、提升流量层次及丰富流量内涵作为基本经营方向,并以释放流量价值为基本目标,可见大数据和云计算的深度融合与此流量经营目标十分吻合。实际上已经有一些运营商借助大数据Hadoop云工具管理与分析网络中的用户数据,为日常运维及制定市场战略等提供有效支撑。
(3)针对大数据时代的基本特征,加强全方位创新。包括IBM、EMC、HP、Microsoft等在内的IT巨头,纷纷加速收购相关大数据公司进行技术整合,寻找数据洪流大潮中新的立足点。而涉及人工智能、机器学习等新技术的创新应用,已初显效益。
(4)将大数据时代全方位创新工作和智慧城市发展紧密结合。借助移动互联网、大数据与云计算的融合、智能运营管道等,建立智能平台,优化配置城市资源,向真正的智慧城市迈进。
(5)借助大数据创新处理技术应对APT安全攻击。APT安全攻击的最主要特征为单点隐蔽能力强、攻击空间路径不确定、攻击渠道不确定;同时APT攻击一旦入侵成功则长期潜伏,攻击时间上具有持续性。目前,全流量审计方案具备强大的实时检测能力与事后回溯能力,并可将安全工作人员的分析能力、计算机存储与运算能力组合在一起,是一种较完整的解决方案。
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。