首页 > 大数据 > 正文

数据挖掘在客户关系管理系统中的应用

2013-07-29 09:02:08  来源:万方数据

摘要:客户资源是经营期间创造收益的基本保证,与客户保持良好的合作关系也是企业需要重点解决的问题。建立客户关系管理系统能够更高效率地服务于客户。
关键词: 数据挖掘 客户关系管

    0 前言


    商品经济时代,经营者深刻认识到与客户保持良好合作关系的重要性。无论是生产型或者销售型企业,抓住客户资源均是其创造理想收益的核心条件。建立客户关系管理系统使企业与客户之间的信任合作关系更加稳定,运用于数据挖掘模型深入挖掘客户资源价值是改善经营的基本要求。经营管理者借助数据模型可从多个角度辨别客户关系的现状,及时调整营销战略以保持正常的收益水平。


    1 客户关系管理系统的相关特点


    受到市场经济竞争环境的刺激,管理者逐渐转变了传统落后的经营思想,引入了先进的经济管理理论。大部分企业深刻认识到客户资源的潜在价值,纷纷建立了客户关系管理系统(CRM)以维持良好的合作关系。从本质来说,CRM是结合高科技完成自动化经营的综合模式,尤其是以计算机技术为代表,开辟了现代化市场营销、客户服务的创新体系。CRM运用过程中的具体特点:


    (1)技术性。信息科学技术是成立CRM不可缺少的条件,灵活运用系统操控技术可避免运营失误,降低了企业在市场经营中需要承担的各种风险。客户关系管理系统技术性特点表现:①硬件采用多功能计算机及其辅助设备,作为管理系统的操作平台,方便了客户信息的高效处理;②软件安装了不同功能的操作软件,配合数据挖掘技术获取价值信息。


    (2)创新性。理论上,CRM坚持了“客户关系一对一”理论,在经营理念方面实现了很大的突破;实践上,经营者根据客户关系管理系统的执行需要,编制了一系列的新型管理机制,如图1所示,有效地改善了企业与客户之间的合作关系。先进管理系统普及于各个行业,既能带来运营模式的优化升级,也对具体项目的营销规划提供了参考,带动了内部控制效率的提高。


    (3)共享性。借助于客户关系管理平台,企业可及时掌握与客户相关的信息,如:商品需求、服务需求、消费需求等,及时制定符合客户需要的个性化服务。相反,客户通过CRM也能实时掌握企业的经营动态,如:销售优惠、产品升级、业务拓展等,从而选择自身需要的项目消费。这实际上是CRM共享性特点的表现,企业与客户之间的信息均能共同享有。

\

    图1 客户关系管理系统


    2 引用数据挖掘技术的数据准备


    数据库是企业存储各类信息的“仓库”,日常经营所积累的信息数据均存储于管理数据库。由于技术条件的限制,未能尽早发现数据库信息潜在的应用价值,约束了企业经济收益水平的持续增收。客户资源是管理数据库尤为重要的数据信息,充分挖掘客户资源的内在价值可建立持久稳定的客户关系。数据挖掘技术运用于CRM必须做好充分的准备工作,如下:


[page]    (1)收集信息。客户关系管理系统引用数据挖掘技术,需要准备完整的客户信息,要求尽可能收集到更多与客户相关的基本信息。具体信息内容:①历史数据。查阅企业的交易记录,收集客户对象与企业在过去时间是否存在合作关系;②交易数据。查找某个合作项目的交易情况,应涉及到交易金额、产品数量、服务内容等;③个人数据。客户个人的资金持有、外在债务、消费水平等状况,为客户资源价值的挖掘提供资料。准备这些数据可通过内部资料获得,从各部门的管理数据库筛选即可。


    (2)数据处理。准备客户关系管理系统数据结束,便可以利用计算机处理器进一步处理数据。处理的流程:①筛选。根据企业与客户存在的合作关系,筛选具有实用性价值的数据。如:销售型企业,重点筛选出客户的产品需求、消费能力、收入水平等;生产型企业,主要筛选客户对产品的采购量大小、质量标准的要求等;②处理。处理筛选出的客户数据,利用数据模型深入挖掘出有价值的客户资源,要求分析人员配合数据模型,如图2所示,详细地计算获得准确的结果,客观地指导企业调整经营策略。

\

    图2 数据挖掘运用于CRM的流程


    3 数据挖掘应用于CRM的操作方法


    由于市场营销模式的转变,企业清晰地认识到客户资源的商业价值。CRM采用先进的信息科学技术,将企业的营销、销售、服务等融于一体的管理模式,显着改善了企业向广大客户提供服务的质量水平。数据挖掘运用于客户关系管理系统,实际操作要点涉及到需求预测、价格预测、周期预测等3个核心内容,这些都与企业经营收益额密切相关的。


    (1)需求预测。对客户购买需求客观地预测分析,指导了企业生产或推销商品的主流方向,使其更加符合于整个市场消费的走向。利用数据模型能查阅到企业与客户在过去交易活动中的真实数据。需求预测决定了购买走向,也是企业制定服务项目的主要依据。需求预测的主要参数:客户已购买产品的已使用时间x;根据客户属性特征和回归方程,计算客户下次购买产品的时间间隔y。若x>y,说明客户重新购买此产品的概率较大,企业可向客户宣传发送相同产品的信息,促进客户重新购买本款商品;若x<y,说明客户重新购买此产品的概率较小,应及时更新产品信息,吸引客户尝试购买其它新款商品。


    (2)价格预测。质量是影响产品成功销售的决定性因素,但价格对客户参与购买活动也有极大的刺激作用,数据挖掘技术运用于CRM也应对客户能够承受的价格标准进行预测。经过某段时间的市场调查,了解客户能够承受的价格范围。先挖掘出产品在市场销售期间的平均价格,再把平均价格与客户的心理承受价格相比较,选定一个比较接近客户实际的承受系数-“k”,得如下公式:


    k=历史接受价格/平均价格


    无论客户是否购买相同类的产品,数据挖掘出平均价格后,均可运用该公式计算出客户心理的大概价位,刺激消费者积极参与购买活动。同样,企业建立客户关系管理系统时也可运用该公式,科学地划分出不同需求、不同级别、不同消费的客户群,为制定市场营销战略提供客观的依据。


    (3)周期预测。基于数据挖掘技术的客户关系管理模式,掌握消费客户群体参与经济交易活动的最新动态,以提供“高质量、高满意、高水平”的服务项目。产品使用到一定周期往往会被淘汰,客户要重新选购新的产品。此时企业必须维持客户生命周期,吸引客户长期购买本企业产品。例如,企业对客户生命周期限定为10年,客户的平均购买周期a,客户上一次采购至今的时间间隔b。根据如下公式:


    (b-a)/a×100%>10


    若计算结果>10,说明企业客户在不断流失,客户购买产品的次数、数量均呈现出下降的趋势。深入挖掘这一客户资源价值,能提早发现市场营销活动发生的变化,提醒企业采取紧急措施挽留客户,使客户生命周期保持更长的时间。


    4 结论


    企业投资建立客户关系管理系统,主要目的是与广大客户保持固定的合作关系,使不同产品有足够宽的销售途径,最根本目的是实现经济收益的提高。数据挖掘应用于客户关系管理系统,提供优越的产品服务,获得更多采购客户的认可,间接性地扩大了产品销售额度,促进了销售经营的收益水平。


第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:chenjian

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。