首页 > 大数据 > 正文

安防行业:未深入发掘的大数据宝库

2013-09-27 14:10:38  来源:和讯网

摘要:成百万的摄像头已经联网,给我们的人财安全、交通出行带来了非常多便利,庞大的视频数据分析比传统互联网数据更接近于真实的世界,这个潘多拉盒子的里面,究竟会带来什么?
关键词: 安防行业 大数据

    成百万的摄像头已经联网,给我们的人财安全、交通出行带来了非常多便利,但这仅仅是开始,实际上,现在的技术已经能够很轻松地进行智能识别、人流计数甚至行为识别等,这庞大的视频数据分析比传统互联网数据更接近于真实的世界,这个潘多拉盒子的里面,究竟会带来什么?


    记得几年前看过一部电影,威尔史密斯主演的《国家公敌》,影片中美国的各个角落充斥着摄像机,CIA可以随时调用这些摄像机进行追踪,无数的摄像机形成了一张超级大网……当时觉得有点科幻也有点背寒。


    不过短短几年,这已经成为了现实,成百万的摄像头已经联网,给我们的人财安全、交通出行带来了非常多便利,但这仅仅是开始,实际上,现在的技术已经能够很轻松地进行智能识别、人流计数甚至行为识别等,这庞大的视频数据分析比传统互联网数据更接近于真实的世界,这个潘多拉盒子的里面,究竟会带来什么?


    视频监控将是世界上最大的数据生成器


    2012年这个世界上增加了2.8ZB的数据,相当于30亿TB。如果视频数据也存储下来,这个数据就要翻倍了。


    以国内某省为例,公共视频监控已经超过100多万个摄像头,总保有量近400万,以此估计,全国摄像头数量不少于4000万,某投行的报告称行业每年还在以20%加速增长,行业龙头海康威视(002415,股吧)12年的年报披露的销售量就达570万套(含前后端),增长37%。而另一个数据也很惊人,英国的摄像头数量与人口数量之比已经达到1:15。粗略计世界至少有1亿个摄像头在角落静静的看着。


    如果这些数据存储下来,将是超级大数据。假设所有摄像头换为1080P,每天的数据量是64G,每年的数据量是23T,全世界每年将产生23亿T的视频数据。


    这是个可怕的数字。不知是有幸还是不幸,绝大部分视频监控数据存储不会超过一天,因为从目前看来,与存储的价格相比,这些数据不值钱。


    正在形成的超级视频监控云


    视频监控已经不再是以前那样,几个摄像头连到大楼保安室,只有进入这个神秘的房间才能一窥究竟。实际上,监控摄像头已经成为了智能终端,有网口、能控制甚至可接双向音频,摄像头的互联已经成为趋势。


    例如公共视频,已经从一个城市内的互联,发展到一个省的互联,逐步到一个国家的互联,无论是新的网络摄像头,还是旧模拟摄像头+DVS/DVR,都开始加速接入一个庞大的云平台,从单纯的视频流媒体数据到云台操作,每一个终端都成为了一个可被远程控制的智能化终端。而另一端,这些数据又被包装成各种公共应用向公众开放,看看媒体里充斥着多少手机可实时查看城市道路交通视频的新闻。


    除了公共视频,无数私有视频也在形成私有云,分支庞大的连锁超市、连锁酒店、物流公司、金融机构甚至工业生产线,无数端点的数据正在向云汇集。而不少国家也要求私有视频数据也要定向开放,可被调用和操作。


    这正是与互联网不同的物联云网络,从感知到互联到应用,只不过这个感知是用无数的“眼睛”看世界。


    视频大数据的价值还未发掘


    一般看来,视频的冗余数据太多,只有发生了突发事件才会回看记录,所以大部分视频数据的存储很短,超过一周的少之又少。而另一方面,由于数据读写要求高,云端存储极为昂贵(几千元1TB),所以绝大部分数据都是存在前端。视频智能分析的初衷就是要解决冗余数据的问题,把人从枯燥的监控中解放出来,帮助人更好的眼观六路。所谓智能的核心就是目标识别和行为分析,按照应用的要求设定规则,当视频中的信息符合规则时才进行告警和记录,常见的应用包括入侵检测、周界告警、车辆识别、交通违法监控等。


    目前行业主流的智能分析厂商,如国外的ObjectVideo、ioimage、Emza,国内的卓扬科技、文安科技、智安邦科技等,基本都是围绕“监控”二字,属于视频数据的初级加工,一般只是对单个摄像头的视频信息进行实时处理,按一定规则产生事件数据(如告警事件、车辆计数),跨空间和时间范围的二次加工分析还比较少,因此,视频监控领域并未真正的形成互联网意义上的大数据


    不过视频监控数据必定能成为下一个大数据的宝库。一方面,它具备了典型的大数据4V特征,数据量巨大、多样化、表面上无序、但暗含着无数人和物的行为。另一方面,它是真实世界的写照,这与互联网获得的大数据有很大不同,真实世界蕴含了无数难以用格式化文字表达的信息,比如人通过视觉可以快速形成判断,一个地方是繁荣还是衰退,气氛是紧张还是欢快。


    当然,前提是,存储成本能降下来,数据处理能力能升上去。


    比如对于一个商场,除了对安防的需求之外,对视频数据的二次挖掘,可以搜集顾客的性别、年龄、穿着信息,可以统计顾客的购物路径、停留模式、聚集热点,甚至可以二次或者多次回头率、到店周期等。这类似于网站访问分析,能为商场的优化提供基础数据。如果是连锁型企业,还能结合多店的数据,获得区域性甚至全国性的数据。


    同样放大到一个城市,每个街道的人流数据、车流数据都在其中,这些数据整体汇集起来,就是一个城市的人车分布图,静态的如不同区域人的特征、车的特征,动态的如人车的路径、停留模式,这对城市的规划和管理都极有价值。


    如果再结合到时间线,从无数摄像头收集到的信息,还可以看出一个国家、一个区域、一个城市的变化,如同《大数据》里所言,甚至可以预测趋势,比如是否更多的店铺在新装修开张还是更多的歇业,是更多的饭店还是更多的服装店等,这些变化汇集起来我们可以看到人口的变化、经济的趋势、潮流的趋势、自然环境的变化甚至人的快乐和紧张程度。


    这不是天方夜谭,现在的技术已经完全做到。一方面高清摄像机的普及,视频信息质量更加优良;另一方面,智能分析的水平已经相当的高,对物品的识别和分离、对人脸的识别、对颜色文字数字的识别、对物体变化的分析甚至还有暴力行为的监测。


    但要实现这种意义上的数据挖掘,需要进行大量元数据的记录,甚至是与监控目的无关的元数据,要深度的进行分析,需要海量的数据汇集存储和超大规模的数据处理,最后还需要基于位置和时间的进行关联性分析整合,这巨大的资源和成本耗费是打开大数据之门的障碍。


第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:chenjian

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。