2013-10-15 15:47:06 来源:TechTarget中国
Michael Berry对大数据的浮夸之词颇不以为然。身为旅游网站TripAdvisor的分析总监,他认为更多的数据未必带来正面的业务影响,比如大数据和预测分析的例子。
“很多预测分析的应用其实并不需要所有的数据。”Berry在Predictive Analytics World做主题演讲时说到。因此,对于数据科学家来说,重要的不是想着怎样分析所有的数据,而是看通过哪些数据可以得出真正有价值的结果。那么到底该怎么办呢?“对于这个问题,没有直截了当的答案。”Berry说。
但是,通过每次增加一些数据的方式来测试预测模型的有效性,可以最终确定多少数据是足够的。比如,当Berry想知道旅游代理商对某家酒店或特定客户的标准价位时,采用计算平均值的方法:选取两个取均值,然后是三个…最终在1万个时均值稳定下来。如果取2万个,均值肯定会发生变化,但这已经没有必要了。
“这就是关键所在。如果你有足够的数据,那么单纯数量上的增加就不会对结果造成很大的影响。”Berry说。
如果过多的数据不会带来本质的不同,那么什么才是关键所在呢?“很多方面。”Berry表示。数据的纯净度、样本的合理全面以及专注于数据质量和挖掘的人才等,都会导致结果的不同。
这些都是预测分析中的关键点,比如指出哪些变量可以使模型更健壮,或者结合哪些来源的数据可以发现新的模式。
“比如风寒效应(wind chill factor)。”Berry说。结合了实际的温度和风速,才能切实分析出人体对于外界环境的感受。
大数据的误区
Berry并非唯一对当前大数据和预测分析境况有微词的人。咨询公司Rexer Analytics的创始人Karl Rexer认为数据科学家们多少都有点迷茫失措。在其2013年对数据挖掘从业者的调查看出,受访者反馈表明数据规模变得越来越大。但是,当被问及有多少数据被用于真正的分析时,答案和2007年的调查结果并无二致。
这并非证明所谓大数据是一场闹剧。“对于传统的预测分析建模或数据挖掘项目来说,总体的样本规模并未出现增长。”Rexer说。
缩写词汇命名
将分析术语转化为业务端所能理解的语言,是一种巨大的挑战。工资、人力和服务外包提供商Paychex是这样打破藩篱的:根据业务端的建议来进行描述。
“当我们构建模型时,会举行一个命名比赛。”Paychex的建模分析师Tom Kern在本次Predictive Analytics World上表示。Kern的团队会向用户发送电子邮件,其中对模型进行了简短的描述,并且提供一些词汇供其使用。用户根据实际工作,创造缩写词汇,比如SAM表示销售预期模型(sales anticipation model),TIM表示领域识别和映射模型(territory identification and mapping model)。
如果业务端用户的建议最终被采用,其就会收到一个礼物卡。由此,就可以根据诸如销售人员之类的用户的期望,从而思考预测模型该做些甚么。
汰渍的策略变化
作为全球最大的零售商之一,宝洁公司宣布推出一款新型的低价汰渍洗衣剂,以此来吸引中端客户。该如何评价这个决策呢?
Shel Smith是市场分析公司Twenty-Ten Inc.的创始人,他的看法是:“如果你发布类似的产品,不仅仅是在获取新的客户,其实还在鼓励已有的客户替换现有的高价产品。”
鉴于当前经济形势的影响,这种担忧并非没有道理。但是,Smith对宝洁的策略持有信心。他认为,宝洁的策略是基于预测模型、海量数据和精准营销来达成的,可以在获取新客户的同时不影响现有品牌的销量。
“宝洁肯定有很多我们不知道的过人之处,但是在获取新客户方面并无什么神秘的。”Smith表示。
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。