2013-10-24 13:59:07 来源:华为中央研究院
著名管理学大师彼得·德鲁克曾说过,当今企业间的竞争,不是产品的竞争,而是商业模式的竞争。Rappa(2004)认为,商业模式规定了公司在价值链中的位置,指导着公司如何赚取剩余价值;并指出商业模式明确了一个公司开展什么活动来创造价值,在价值链中如何选取上下游合作伙伴以及怎样与客户达成交易、为客户提供价值。
目前,在大数据产业链上有三种大数据公司:
1)基于数据本身的公司(数据拥有者):拥有数据,不具有数据分析的能力;
2)基于技术的公司(技术提供者):技术供应商或者数据分析公司等;
3)基于思维的公司(服务提供者):挖掘数据价值的大数据应用公司;
不同的产业链角色有不同的盈利模式。最近,我按照以上的三种角色,对大数据的商业模式做了梳理和细分。
“数据拥有者”的商业模式
数据拥有者,这样的公司有三类:
1.大数据是业务核心,对大数据的重复利用是其发展的原动力,例如Google、Amazon、Inrix等;这种公司具有很强大的大数据技术能力,多数时候大数据技术本身主要用于自身的运作,具有三种产业链角色:数据(+技术)+服务;
2.大数据是作为提高生产效率、增加业务收入或者创造新的收入的使能器,非厂商的主流业务;例如运营商、银行等,运营商的主要业务是通过通信设备提供的各种网络语音和数据业务,目前运营商本身并不通过数据的重复利用为主要手段来盈利;
3.数据中间商,本身不具有创造数据的能力,从各种地方搜集数据进行整合,然后再提取有用的信息进行利用;
它们的商业模式有:
·2B:面向企业或者公共政府部门,提供数据分析结果的服务;例如Inrix在交通信息领域,面向GPS生产商、和交通规划部门、 FedEX和UPS等物流公司等,出售完整的当前甚至未来的交通状况的模式图或者数据库;
·2C:面向个人,提供基于数据分析结果的服务。例如:Inrix提供一个免费的智能手机应用程序,一方面它可以为用户提供免费的交通信息,另一方面它自己就得到了同步的数据。
·2D:租售数据/信息模式(数据资产分享和交易平台),新的商业模式,把数据/信息作为资产直接进行销售;例如:Twitter把它的数据都通过两个独立的公司授权给别人使用;VISA和MasterCard收集和分析了来自210个国家的15亿信用卡用户的650亿条交易记录,用来预测商业发展和客户的消费趋势。然后,它把这些分析结果卖给其他公司;
“技术提供者”的商业模式
技术提供者的2B商业模式是目前的主流,有4种类型:
·提供单点技术,pure-play为主,例如:Teradata为沃尔玛和Pop-Tarts这两个零售商提供大数据分析技术,来获得营销点子;
·提供整体解决方案,IT厂商为主,例如:IBM提供软硬一体的大数据解决方案;华为基于IT基础设施领域在存储和计算的优势,提供整体大数据解决方案;
·大数据空间出租模式:大数据计算基础设施上(与云结合),通过出租一个虚拟空间,从简单的文件存储,逐步扩展到数据聚合平台,例如腾讯开放云战略为大数据创业者提供了廉价的数据基础设施,使中小企业也有机会在大数据领域创新业务。
·Bigdata as a service,新的商业模式,提供E2E在线大数据技术或者解决方案。例如 RJMetrics,为电商提供快捷的商业智能在线服务,软件定价为 500 美元每月,客户只需在软件端输入特定数据,RJMetrics 便会将这些信息备份到安全的服务器上,并承诺在 7 日内优化数据用以分析,之后以清晰简洁的界面将数据分析结果反馈给客户。再例如,GoodData主要面向商业用户和IT企业高管,提供数据存储、性能报告、数据分析等工具,将所有商业智能分析所需的数据和任务都搬到了云上;
技术提供者的2C商业模式,目前较少,与cloud结合后有很大的空间,未来是趋势。例如:面向个人的家庭帐单、家庭耗能节能等或者面向个人数据的大数据解决方案。
“服务提供者”的商业模式
服务提供者有两种,一种是应用服务提供者,另一种是咨询服务提供者。
应用服务提供者是基于大数据技术,对外提供服务:
·2B:面向企业或者公共政府部门,提供数据分析结果的服务;例如前面提过的Inrix ;
·2C:面向个人,提供基于数据分析的服务;例如: FlightCaster 和FlyOnTime.us基于分析过去十年里每个航班的情况,然后将其与过去和现实的天气情况进行匹配,预测航班是否会晚点;
咨询服务提供者,提供技术服务支持、技术(方法、商业等)咨询,或者为企业提供类似数据科学家的咨询服务;
·2B 商业模式:定位在某一具体行业,通过大量数据支持,对数据进行挖掘分析后预测相关主体的行为,以开展业务;利用数据挖掘技术帮助客户开拓精准营销或者新业务,有时企业收入来自于客户增值部分的分成。 例如德国咨询公司GFK帮助Telefonica 面向零售商、政府部门、公共机构提供基于地点的人员流动(Footfall)数据:以时间为维度(小时/天/月/年),在特定区域的人员人口统计数据(性别、年龄)和行动等数据; 这类企业成长非常快,一般擅长数据挖掘分析技术,帮助一些数据大户如银行、运营商等开展新的业务。
个人认为,目前产业链上真正的大数据玩家,应该是通过重复利用数据获得利益的公司,例如Google。Google所有的业务都是构建在大数据之上的,索引整个互联网网页,成功地建立了“网页搜索+广告”的商业模式,发展大数据并挖掘大数据的新价值是其不可不为的原动力;Google是大数据最大的玩家,抢占“人”生存数字化、智能化的入口;2012年Google总营收501.75亿美元,利润107.4亿美元,其9成利润来自广告。我在上一篇关于《大数据的商业本质》中提到,有咨询公司预测2017年全球大数据技术(包括技术、工具和服务,该处服务是指大数据支持、培训和专业服务)市场空间约500亿美金(2012年约为50亿美金),约等于Google 的2012年的总营收。“数据为王”或者“数据驱动”的业务内涵和模式是大数据时代的未来利益最大者。
大数据要想落地,必须有两个条件:一是丰富的数据源,二是强大的数据挖掘分析能力。目前,IT领域软件开源盛行,逐步降低了分析技术的门槛。很多企业在大数据战略上受挫,就是因为数据源匮乏。企业要想在大数据时代领先,必须多方合作等方式获取更多的数据,这是大数据的基础,也是大数据战略成败的核心。
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。