新技术革新时泡沫与机遇并存,核心在价值认同。
面对经济学家,人们常喜欢请他们基于经济学理论对未来进行预测。而对此,坐在我们面前的诺奖得主托马斯·萨金特教授,最爱说的则是“我不知道。”对不少人来说,萨金特这个名字或许还比较陌生,然而他的金句却在这两年广为流传 —— “中国创新速度是美国的三倍”;“中国的经济发展需要关注强劲的驱动力”;“人工智能就是统计学”。
托马斯·萨金特(Thomas Sargent) 是理性预期学派的领袖人物,为新古典宏观经济学体系的建立和发展作出了杰出贡献。他与卢卡斯、巴罗和华莱士一起开创了合理预期学派,研究利率的期限结构、古典失业、经济大萧条等重大问题。2011年,因“对宏观经济中因果的实证研究”,托马斯·萨金特获得诺贝尔经济学奖。近年来,萨金特教授频频来访中国,曾在多个场合表达对中国移动互联网创新能力的感叹,2017年更加盟了北大汇丰商学院,担任萨金特数量经济与金融研究所所长。
近日,萨金特教授来到36氪WISE 2018新商业大会,围绕“创新和企业家精神”进行演讲,从经济学、科学发展视角阐述了创新来自“人与人间的连接”、“大数据带动互联网及未来智能时代发展”、“企业家精神来自零数据”的观点。怎么理解“企业精神来自零数据”?如何看待技术革新中产生的“泡沫”?如何在市场泡沫破碎前觉察端倪?正在发生的智能时代,“AI就是统计学”这句话是否仍旧适用?
围绕这些问题,36氪在会后对萨金特教授进行了专访。2011年诺贝尔经济学奖得主,托马斯萨金特(Thomas Sargent)企业家精神 :“在未知状态下创造”
芝加哥学派创始人富兰克·奈特(Frank Knight)是20世纪最有影响力的经济学家之一,他曾如此描述企业家的本质:“现实的经济过程是由预见未来的行动构成的,而未来总是存在不确定因素,企业家就是通过识别不确定性中蕴含的机会,并通过对资源整合来把握和利用这些机会获得利润。”芝加哥学派创始人 Frank Knight
在这一理论的影响下,萨金特教授提出了“企业精神来自零数据”的观点。“零数据”一方面指企业在创立之初资源匮乏;另一方面则是指初创企业会推出具有颠覆性的产品和技术,在此过程中“没有一个模型可以依靠,去预测概率”,因而在产品技术和市场间蕴含着大量不确定性。在萨金特教授看来,企业家最令人钦佩的地方就是“在未知的状态下创造,从零数据起步承担风险”。以乔布斯为例,在初代iPhone面市时,少有人能预测人们是否对智能手机有需求,而iPhone则成功地将颠覆性创新技术变为市场可接受的消费品,这就是企业家带给市场的惊喜。技术革新泡沫 :“核心在价值认同。”
毋庸置疑,苹果是卓越的,然而能够跨越技术和市场之间鸿沟的企业却寥寥无几,成功的人赢得市场,跌落的则沦为“泡沫”。其实,在每一个新技术产生时都是机遇与“泡沫”并存的,比如1998年的互联网和2018年的区块链与虚拟数字货币。多年学习和工作于硅谷,萨金特教授曾亲历互联网“泡沫”期。当年,他斯坦福的学生和同事们大多沉浸在互联网创业的狂热中,然而95%以上都以失败告终。但是,失败并不意味着“泡沫破碎”。在萨金特教授看来,这恰恰是创新过程中“不确定性”的体现 —— “对于企业而言,风险是能通过数据集进行预测和衡量的,而不确定性则是完全未知的。”基于此,即便是经济学家也无法对这样的企业进行可信的估值,这也意味着不可能判断是否存在真正的泡沫,更无从衡量好坏。
其实,学界对于“泡沫”的含义从未有过定论。萨金特教授和我们分享了40年前,斯坦福大学学者们对于“泡沫”的观点:在任何给定的时间点,市场上都会存在乐观者和悲观者,乐观者选择买入,因为他们相信可以卖给下一个乐观者,这源于对价值的认同,而当对于价值产生异议时,泡沫也就产生了。顺着这个思路来看虚拟数字货币,萨金特教授解释道:
“客观来说,所有货币都是泡沫,因为当一种资产交易价格高于基础价值时候就是一种泡沫。我给你一美元,虽然它就是一张纸,但是因为你我承认其交换价值,使得这个价值得以维系。一旦有人不认同了,价值共识链条也将断裂。”我们或许可以这样认为:新技术在被大众接纳前,在某种程度上都曾以“泡沫”的形式存在,而由此产生的投资,也是在市场上寻找对该技术价值的认同者,当越来越多人体会到并认同其价值时,这项创新才算跨越了鸿沟,反之则泡沫破碎。经济波动与理性预期 :“政府角色举足轻重”
其实,市场并非不接纳泡沫,只是不喜欢泡沫破碎。那么有没有可能在泡沫破灭前察觉端倪并采取措施呢?对此,萨金特教授表示:依托理性预测的理论基础,人们通过参照和利用过去历史提供的知识,能对泡沫进行合理预判。他个人很欣赏2013年诺贝尔经济学奖得主罗伯特?席勒(Robert Shiller)在发现市场泡沫方面做出的贡献。2013年诺贝尔经济学奖得主 Robert Shiller
罗伯特?席勒曾成功预测了2000年美国互联网泡沫破裂、2005-2007年美国楼市危机以及2008年全球金融海啸。作为“行为金融学”的推广者,他认为“人脑都具有故事性”,并曾于2017年在CNBC采访中表示,比特币之所以价值飞增并非在其自身价值,而是它塑造的故事激发了人的追捧,因而抗周期性有待考量。除了市场泡沫,市场情绪还有来自市场参与者的不确定性,都会导致经济波动。在萨金特教授看来:在多变的经济周期中,单纯利用历史数据或者任何既有模型都很难准确判断未来,这时候,政府的角色举足轻重。
他向我们推荐了哥伦比亚大学经济学教授Jose A. Scheinkman的书《Speculation, Trading and Bubbles》, 其中阐述了2015年6月美国股灾后的市场反应与政府应对措施,对处在经济周期中的国家政府都有着借鉴意义。哥伦比亚大学经济学教授Jose A. Scheinkman着作《Speculation,Trading,and Bubbles》智能时代 :“AI与统计学相辅相成”
今年8月,萨金特教授在中国公开演讲时曾语出惊人:“AI首先是华丽的辞藻,其实就是统计学。”在访谈中,他告诉36氪:这个理念并非自己原创,而是借鉴自卡内基梅隆大学教授 Larry Wasserman的统计学着作《All of Statistics》。卡内基梅隆大学教授Larry Wasserman的《All of Statistics》萨金特教授认为:统计学和AI两者相辅相成。
回顾统计学、大数据的发展历程,18-19世纪统计学诞生,随着数据增多,人们发现计算功能落后于自己处理数据的需求;到了20世纪,随着算力、计算功能的提升,人们得以在技术辅助下用统计学理论处理海量数据集。
与此同时,统计学的思想和理论基础也在推动深度学习、机器学习等领域的发展。正如萨金特教授所说:“如果你去学习一些AI课程的话,你会发现不少算法都是把不同的统计方法组合然后再运行的。”
其实,无论是AI还是其他革命性技术,都是多学科、交叉人才连接的结果。有一些理论,可能产生于经济学,但是被用来解决AI领域的难题;有一些统计学理论,比如控制理论、概率论等,则可以帮助我们理解区块链、深层信任网络等关键技术。而对于每个个体,具备跨领域思维也显得尤为重要。正如萨金特教授本人,虽是经济学家,但在历史和数学方面都颇有研究。他和我们分享了自己学习数学的经历:科研中发现数学短板,30岁起步研究,40岁基本掌握,至今仍每天钻研。对他而言,拓宽学科边界是一生坚持的课题。不管是在当下还是未来,人人互联、领域融通,都是社会创新不变的原动力。
第三十四届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:baiyl
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。