[干货分享]数美联合创始人&CTO梁堃: 无孔不入的机器学习与人工智能
[干货分享]数美联合创始人&CTO梁堃: 无孔不入的机器学习与人工智能
2016-11-23 11:37:52 来源:CIO时代网抢沙发
2016-11-23 11:37:52 来源:CIO时代网
摘要:人工智能和机器学习这两个生僻的科技术语如今已经广为流传。过去10年,机器学习已经为我们带来了无人驾驶汽车、实用的语音识别、有效的网络搜索,还大幅加深了我们对人类基因组的理解。
关键词:
人工智能
【编者按】:人工智能和机器学习这两个生僻的科技术语如今已经广为流传。过去10年,机器学习已经为我们带来了无人驾驶汽车、实用的语音识别、有效的网络搜索,还大幅加深了我们对人类基因组的理解。机器学习是什么;机器学习能做什么;企业机器学习应用趋势又哪些?数美CTO梁堃在以“大数据与人工智能”为主题的第五届中国大数据应用论坛上,分享了他的理解,以下是他演讲的内容。
演讲嘉宾:梁堃,数美联合创始人&CTO, 高考状元,北大学霸,曾就职于百度,小米担任高级工程师,架构师。两次获得百度年度“MVE”(最具有价值员工) 。成功将大数据运用于搜索 推荐,反欺诈,风险控制等领域。具有大数据方案整体架构能力。擅长发现并解决用户在大数据领域的痛点。
先做下自我介绍,我是梁堃,数美的联合创始人兼CTO。很荣幸有机会给大家介绍机器学习和人工智能。这次介绍分为三个部分:
第一部分,机器学习是什么
第二部分,机器学习能做什么
第三部分,企业机器学习应用趋势
机器学习是什么
一个方面来介绍机器学习,就是从机器学习的目标或者业务要做什么来介绍。机器学习最大的是计算机科学,其中有一个很重要的分支是人工智能。人工智能里面有两种实现人工智能的方法,这两种方法分别对应于人类智能的两种思考模式,一种思考模式叫做演绎法,就是我从已知的规则和事实推导新的规则和事实。这个系统是之前60-80年代用的比较多的系统,叫专家系统。而第二种在人类思考叫做归纳法,通过对事实观察归纳来归纳总结出来新的规律、新的事物的本质,然后再把它应用到新的事物里面去。把这个是现在计算之中就叫做机器学习。当然最近几年非常热的机器学习的方法叫做深度学习,它是机器学习里面的一个领域。
从一九四几年开始发展出来计算机科学,它在做什么?本质就是尝试对业务进行自动化处理。刚出来的时候完全是针对数字计算,大规模的计算,如果要靠人来做这个事情是很困难的,需要花费大量的精力和时间。那么能否让机器像做成流水线计算呢?这就是最早的计算。我们不断的去探究,不单单数据计算自动化了,普通企业各个行业的企业里面的流程以及业务也在被信息化、自动化。这是关于数据库出现之后包括订单的转移、ERP财务等等都被自动化。随着计算机越来越火,可以自动化越来越多的东西,互联网自动化很多东西,比如对资料的检索等。当我们进一步拓展可以自动化的范围时我们发现了一些困难,举个例子,比如说自动驾驶一辆汽车,这件事情就非常困难。因为计算机本质上它是一个程序,需要得到明确的指令,第一步做什么、第二步做什么,它才能做。而自动驾驶汽车,这个无法用一个明确的指令描述,因为这个过程非常复杂。
还有一个非常一经典问题就是有一只小猫,连一个三岁的孩子都可以非常容易辨别出来,但是写一段程序让计算机系统认知就很复杂。
所以就提出来第二个分支:人工智能,就是想对非常复杂的问题或业务进行智能的自动化。为什么叫智能的自动化?因为很难用一个确定的公式或算法来一步步的做出来。我们需要这个系统可以去观察世界,可以像人一样思考来智能、理性做决策,最大化目标。比如我要驾驶汽车,在最短时间内到达那个地方同时又不出任何事故,这就是人工智能。人工智能就是把原本机器学习里面简单程序、无法自动化的东西,用一种像人一样智能的把它做出来。
人工智能在业界使用的方法有两个,一个是演绎法,这种方法的核心概念就是有一个专家会把已知的知识和里面的推理规则放到这里面,当出现新的状况时,系统会根据已知的知道推演出新的规则。比如说大楼里都有防火器,其实它就是一个特别简单的专家系统,它只知道一个事实,温度达到一定高度时、有烟雾的时候就会启动。这种系统有一个好处就是只需要专家的支持,而不需要那么多数据的支持。而业务系统,就是我们说得机器学习。
归纳法。这时候没有专家告诉他推理的规则,而是给他一大堆数据,这就是对世界的描述,然后会有个算法,无论是神经网络算法还是其他,这个算法本身是观察数据、探索数据,它会自动的根据统计学规则从数据中总结出来一些规则和事实。当一份新的数据过来,就可以应用到其中,机器学习本身还是把复杂的业务系统自动化。
第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:chenjian
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。