2008-02-13 16:13:08 来源:计算机世界
自世界头号零售商沃尔玛宣布大范围使用RFID和美国军方宣布军需物品均使用RFID标签来进行识别与跟踪以来,近年RFID技术开始在全球范围内掀起阵阵高潮,吸引了众多知名企业参与相关芯片及技术的研究和开发。
目前RFID技术正处于迅速上升的时期,被业界公认为是本世纪十大技术之一,RFID商品标签也被认为将是今后全球商品交易及物流中采用最广的技术之一。但RFID标签的高成本却制约着这一技术的普及(RFID标签的成本大约在每枚0.2美元以上)。为了解决这个关键问题,RFID标签设计及制作工作一直在寻找新的途径。近年来国外已经开始有机RFID标签技术的研究,并且已经取得了很大的成就。采用有机薄膜晶体管(OTFT)能够使IC电路制备在便宜的塑料基底上,进行取代硅芯片的方案,最后通过印刷方式进行批量生产。据估计,这种有机RFID标签的成本将有望降至0.01~0.02美元甚至更低。作为一个低成本的选择方案,有机RFID将在世界范围内开辟一个新的市场,与硅片RFID技术相互补充来满足市场的需求。
有机RFID技术其基本原理同半导体RFID一样,是利用射频信号和空间耦合(电感或电磁耦合)传输特性,实现对识别物体的自动识别。系统一般由两部分组成,即有机RFID标签(应答器)和阅读器(读头)。在实际应用中,有机电子标签附着在被识别的物体上,当带有有机电子标签的被识别物品通过其可识读范围时,阅读器自动以无接触的方式将有机电子标签中的约定识别信息取出,从而实现自动识别物品或自动收集物品标志信息的功能。有机RFID技术除了具有半导体RFID技术的优点以外,还具有便宜、厚度可以非常薄等特点,可以制成柔性电子标签,使用时可以随意粘贴,不受软硬度及厚度等限制,将来可以广泛应用于工业自动化、商业自动化、交通运输控制管理、军事物流等众多领域。
有机RFID作为一种新事物,是有机半导体和RFID技术相结合的产物。有机RFID标签的工作原理、结构、功能及频谱划分等与无机RFID相比并没有太大的区别,二者主要的区别在于材料和加工工艺的不同。无机RFID标签的芯片部分需要通过复杂及昂贵的IC工艺在硅片上制备出来,然后再与天线部分集成在一起构成完整的标签。而有机RFID标签则力图全部通过印刷技术,用金属和有机物墨水把天线和芯片直接制备在同一衬底上,因为采用了印刷电子技术,有机薄膜晶体管能够使电路制备在便宜的塑料基底上,通过卷对卷(R2R)印刷技术批量生产有机RFID标签,这样制作工艺将得到简化,成本也将大大地降低。据Nature Materials Commentary杂志报导,全有机的RFID标签成本将降至每枚0.01~0.02美元。如果有机RFID技术成熟的话,Nature期刊所设想的一种产品可能将大量进入市场: 这种产品将显示部件、传感部件和RFID标签集中于一种商品上。这样对每件商品,消费者可以直接知道其保鲜度、颜色、温度等有关质量信息。
有机RFID标签的结构在组成上与无机RFID标签并无多大差异。RFID标签主要由天线、整流器、IC芯片及负载调节器部分组成。读写器将要发送的信息,经编码后载在某一频率的载波信号上经天线向外发送,进入阅读器工作区域的电子标签接收此脉冲信号,卡内芯片中的有关电路对此信号进行调制、解码、解密,然后对命令请求、密码、权限等进行判断。若读命令,控制逻辑电路则从存储器中读取有关信息,经加密、编码、调制后通过卡内天线再发送给阅读器, 最后阅读器对接收到的信号进行解调、解码、解密后送至中央信息系统进行有关数据处理。因此有机RFID技术的发展还将得益于多项技术的综合发展。所涉及的关键技术大致包括: 有机半导体技术、芯片技术、天线技术、无线收发技术、数据变换与编码技术、电磁传播技术等。
RFID标签按其发射方式可分为反射式和发射式两种。反射式(通常为无源标签所采用)将阅读器发射的高频信号经过标签内产生的识别信号调制后,形成的已调信号反射发送到阅读器中。阅读器将接收到已调信号,并解调出识别信号进行识别。发射式(通常为有源标签采用)射频卡内有高频载波发生电路,该电路产生高频载波,并被卡内产生的识别信号调制,调制后的已调信号发送到阅读器中。
美国的3M公司早在2003年就采用并五苯(Pentacene)等高性能的导电材料制作了储存信息量为1位,频率为125KHz的并五苯RFID标签。电路部分几乎全部采用有机薄膜晶体管制作而成。有机射频卡电路是属于反射式的,7环振荡器和或非门构成识别信号发生电路,产生振荡脉冲识别信号,调制阅读器发出的高频信号,并反射给阅读器,阅读器接收到已调信号,并解调出识别信号进行识别。有机RFID应答器的电路部分包括脉冲识别信号产生电路、缓冲放大电路及射频信号调制电路。
储存信息量大的有机RFID标签则需要加入储存电路部分。在这方面德国PolyIC已经做出了惊人的成果。成功开发出32和64字节内存的有机RFID产品,除天线部分外,调制电路、储存电路和逻辑控制电路等内部电路均使用有机材料,集成了数百上千个有机薄膜晶体管。
有机薄膜晶体管物理特性的提高导致采用有机薄膜晶体管代替无机薄膜晶体管(主要采用硅制造)作为大规模集成电路中的主要部件,是导致有机RFID的诞生及带动有机RFID迅速发展的主要关键技术之一。
有机薄膜晶体管的诞生
过去十多年来,具有光电特性的有机导电分子,以及高分子材料研发中有许多突破性的进展。这些具有光电性质的有机材料,不论是小分子、聚合物或是高分子聚合物,往往可以吸收、发射可见光及光电性质,进而催生出不同的应用,其中最重要的包括有机发光二极管(Organic Light Emitting Diode,简称OLED)、有机薄膜晶体管(Organic Thin Film Transistors,简称OTFT)。有机薄膜晶体管从广义上来说是将传统无机晶体管中的半导体层,用有机材料来取代,并进一步以有机导体与塑料基板来取代无机导体和玻璃基板,完成可挠曲的有机薄膜晶体管。
在传统的MOS组件制造上,一般是利用无机半导体材料硅作为主要材料。一般而言,硅是一种三度空间的共价键结构,强大的键能使得硅原子间形成紧密的三度空间聚集结构,具有宽阔的价带和导带,从而具有相当高的载流子迁移率。但是这种晶粒排列需要高温、高成本的沉积方式来完成。
在有机半导体方面,包含小分子和高分子,从化学结构的观点来看,都含有非定域(delocalize)的π共轭电子; 且由其最高已占分子轨道(Highest Occupied Molecular Orbital,HOMO)及最低未占分子轨道(Lowest Unoccupied Molecular Orbital,LUMO)的差距,可定义其为半导体或导体。在形成半导体层时,分子多以集团方式存在,分子与分子间仅以微弱的凡得华力相联系,所以有机物的电特性,主要是由分子本身的结构来决定。因此,如果分子间排列不够完整,有机物的载流子传输就受限于分子间的传导,而非分子本身共轭结构的完整性,也因为分子间的键结合力小,相较于无机晶体,有机物的价带与导带就显得相对狭窄; 有机分子载流子迁移率,其值可能偏小一些。但自从Koezuka等在1986年报道了基于电化学聚合的聚唾吩OFET(OTFT)器件,一般被认为是真正意义上的可应用于有机电子电路的基本单元器件,同时也被看做是第一次有关OFET器件的报道,从那时到现在短短的二十几年时间里,有机薄膜晶体管的研究取得了巨大的进展,其可以应用于集成电路中有机薄膜晶体管的迁移率已经提高到5cm2/Vs,远远大于非晶硅的迁移率(大约1cm2/Vs)。
有机薄膜晶体管拥有传统无机薄膜晶体管不可比拟的优点: 有机材料可利用溶液进行大面积旋涂、打印,降低制作的成本。相对于无机材料,有机材料可以在较低温的条件下制作, 因此可选择耐热性较差的塑料基板,以制造质轻、具韧性、可挠曲的电子器件。可挠基底、低成本、低温制程,使得OTFT 可以应用于低成本、大面积的软性电子产品的机会大大提升。 例如作为开关元件应用于大面积有源矩阵平板显示领域AMLCD、AMOLED以及传感器阵列,在需要柔性衬底的大规模集成电路中的应用,包括智能卡、智能价格及库存标签、无线射频识别标签、商品防盗标签以及电子条形码等。
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。