一分钟,“蛟龙号”最大能下潜50米,“复兴号”前进5833米,“神威?太湖之光”运算750亿次,333万元投入研究和试验,生产汽车55辆……每一分钟,中国都在发生巨大改变,这样的改变离不开工业的发展,更离不开智能制造。
2015年5月,国务院印发了《中国制造2025》发展纲要,纲要将智能制造作为“中国制造2025”九项战略任务之一。制造业想要实现较大飞跃离不开云计算、大数据、人工智能等技术,这些技术可以用于工程设计、工艺过程设计、生产调度等多个环节。
然而在众多环节中,有一个环节经常被忽略,那就是设备的故障诊断和维护。其实,搭建一个开放的控制和反馈系统,基于数据对设备的运行故障以及异常问题进行动态反应才是实现智能制造的根本。
“对于工业设备而言,从运行状态数据搜集到上传云端存储分析,再到应用组件的整合,整个过程是一条非常长的产业链,做好产业链的某一点并不难,难的是将这些数据打通。”中科云创创始人兼CEO周北川告诉数据猿。
虽然难,但周北川却和他的团队做到了。
设备的维修和维护是块儿“难啃”的骨头
5年前的一天,在微软呆了10年的周北川与表哥的一次谈话坚定了他创业的决心,“我表哥在德国巴鲁夫公司担任中国区副总经理兼销售总监,做了15年的工业设备传感器的销售,他说工业互联网已经到了一个爆发点,如果想做就早点下手。”
其实,在微软工作期间,周北川一直有创业的想法,“我当时在微软的企业服务部,做后端的云平台,包括如何给企业提供售后服务支持,一个项目接一个项目的做着,时间长了脑子里就有了千万个想法,但苦于没有应用场景,想法就搁浅了。”
于是,在与表哥的一番交谈中,周北川沉积多时的创业想法被唤醒,他觉得是时候了。不过工业互联网有商品交易、项目撮合、社区论坛、物联网、柔性制造等众多细分领域,要从哪个点切入,哪个行业入手还需深思熟虑。
“当时,我们看到了工业客户一个比较大的痛点——设备的远程监控和维修维护问题。”周北川决定把它作为切入点。
不过说起来容易,做起来难,摆在周北川面前有两个棘手的问题:第一个是企业的数据沟通问题,第二个是数据量的积累问题。
企业的数据沟通分为两个层面:企业内部的数据沟通和企业与企业之间的数据沟通。在考察工厂的过程中,周北川发现,虽然现阶段大家都在提工业互联网,但多数工厂依然沿着“设备信息化”的老路在走。
“他们依然沿用的是内网、局域网,走有线,为了互相之间的线不要走的太远,控制室、中控室和车间必须挨在一起,一个工厂里就有好几个中控室,各个车间的数据没法打通;设备数据存储在工厂内部,假如接入西门子的仪器远程诊断工厂设备的状态,看不了,要维修设备,必须要到现场。”
工业数据不可能放到公有云平台?
在周北川看来,要打通这些数据需要一个物联网平台。但初创企业搭建工业物联网平台得先找一个“拳头级”应用,不然“九死一生”。
据周北川描述,这个“拳头级”应用要具备三个特征:
第一、简单可复制。互联网领域讲究长尾效应,每个项目需要投入大量的人力成本,在周北川看来并不可取,对于初创企业来说做通用性服务才是王道。可复制有两种方式:一种是产品,另一种是SaaS。如果做产品的话,需要公司的技术人员到企业去部署,这样算下来也是一大笔开销,最终周北川选择以SaaS的方式进行,这样就可以下载即用。
第二、既然要做SaaS,它就要具备标准化。“很多工业领域需要的工具,比如MES、ERP等不好SaaS化,因为它的非标程度非常高,每个企业都必须要带着一个咨询项目去做这件事情,所以也没有办法复制,我们得找到一个可以复制且标准化的应用。”周北川说。
第三、可以放到公有云平台上。相信多数工业企业因担心数据的安全问题,不愿意把数据放到公有云平台上。但在周北川看来将数据放到公有云是节约成本、提升效率的关键,况且对设备进行远程监控和维护只需要状态数据,并不涉及其他隐私数据,所以企业无须担心这一点。
基于这样的思路,周北川率领团队搭建了工业物联网设备健康管理SaaS服务平台——云中控,以数据为基础、设备为节点、流程为准绳、人员为中心,将物联网、语音识别、图像识别、机器学习等技术融入其中。
据周北川介绍,云中控平台通过公有云或混合云的方式,为设备制造商和设备用户快速实现设备的运行状态数据采集、传输、展示和加工等提供一揽子服务。
用户在数据源设备加装工控机或数采模块,标记设备控制系统或传感器等采集点,通过操作图形化界面完成本地设备的数据采集,经由3G、4G、Wifi等方式将实时数据上传到云服务器的数据库。
使用云中控的Web应用和手机APP,浏览设备状态,追溯历史数据,将加工统计后的数据转化为产能、良品率、设备使用率、能耗等各类报表,为生产和运维的优化提供决策依据。
平台有了,但企业为什么愿意把数据给你?
“虽然我们的定位很清楚,但刚开始确实没有企业愿意把设备数据放到我们这个平台上,毕竟没有数据累积和具体的应用案例。”周北川坦言。
不过,当周北川拿着这套解决方案四处奔走的时候,他发现还是有很多企业愿意试一试,毕竟生产设备突发故障后,设备专家不在现场或者无法联络,维修备件没有库存或者供应商无现货,这些情况都会造成长时间的停机,这些问题已经困扰他们多年。
在采访的中,周北川重点提及了东升科技园的案例:
在东升科技园的某个配电室里,按要求每两个小时工作人员需要进行一次巡视,对机房内部的变压器、绝缘开关、断路器、柴油发电机等设备进行检查,把电气设备上的电流、电压、功率、温度等信息抄录下来,发现问题及时报告和处理。
“配电房都依赖人员巡检,而人员巡检存在责任心、技能和设备熟悉程度的差异,巡检效果参差不齐。”周北川表示。
据了解,为了保证园区办公区域不断电,配电室需要两个人轮班值守,一个配电房要配备八个人,一个园区通常是一个到四个配电房,每年花费在配电房人员监控方面的费用就有几百万。
为了节省开支,让巡检更加高效,东升科技园在配电房外增加了现场监控一体机,接入“云中控”的平台后,采集配电房里配电箱、配电柜、不同线路、开关等几千个点位的数据并传到云平台,通过移动终端和运营中心大屏,随时接受提醒、查看数据,及时保养和抢修。
周北川告诉数据猿,中科云创还将机器人用于配电房巡检,“我们做了一个机器人,机器人会把配电柜上的具体信息拍下来,通过图像识别就可以知道哪个灯是亮着的、仪表盘的数据是多少、开关是什么样的状态……通过这些数据和后台数据做对比来检测设备是否正常工作。”
这样的方式不仅能实现配电房的智能化维护,还能结合人工智能实现故障预测。
用“鸡尾酒疗法”做工业大数据
不过,利用人工智能进行故障预测是什么逻辑?周北川告诉数据猿,“把声音识别器安装在配电房里,通过它来采集设备振动或者打火的声音,一段时间之后对累积的数据进行分析,就知道哪种声音是打火的声音,之后就可以通过声音识别来做故障诊断、预判和实时告警。”
当下,在工业领域,图像识别、语音识别已经进入实用阶段,但在算法方面,周北川却认为,用AI来做工业设备的故障诊断,目前还停留在“鸡尾酒疗法”阶段。
“将各种算法运用到机器学习中,最开始的算法扔进去可能只能达到40%的准确率,再换个算法扔进去实现50%,再扔进去一个算法实现70%……之后实现80%,找到方向了,然后再做一些调优,这时候可能用到一些专家、行业知识再去调,最后调到90%多,有一点像鸡尾酒疗法,不过这个过程需要很多有效数据的积累,通常不是短期能够取得巨大成效的。”
在过去的几年里,一些工业领域的巨头依靠自身的数据和技术独自研发了工业互联网平台,例如三一重工的树根互联、沈阳机床的i5系统……根据他们对外披露的数据,所花的费用均在10~16亿之间,对于小企业来讲,这样高昂的研发费用他们是承担不起的。周北川表示:“在我们平台上,一台设备每年只需要支付一千块的运营费,任何一个小企业都可以用得起这个平台。”
如今,中科云创已经在数控机床、港口机械、智能配电、高速设备等领域累积了大量的客户,取得了不错的收入。发展至今,中科云创的团队也已经初具规模,其核心团队多是来自于微软、思科、索尼、华鲁锻压等企业的经验人士。对于2018年,周北川表示,中科云创将重点聚焦在智慧消防、机床的维修维护、融资租赁的设备风控三个方面。
第三十四届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:content
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。