首页 > 智能制造 > 正文

工信部:工业互联网平台加速实现海量数据汇聚

2020-03-13 15:16:28  来源:工信部

摘要:随着新一轮科技革命和产业变革的孕育兴起,数字经济热潮席卷全球。我国高度重视大数据在推动数字经济发展中的作用,党的十九届四中全会首次提出将“数据”作为生产要素参与分配,为数据赋予了新的历史使命。
关键词: 工业互联网
      随着新一轮科技革命和产业变革的孕育兴起,数字经济热潮席卷全球。我国高度重视大数据在推动数字经济发展中的作用,党的十九届四中全会首次提出将“数据”作为生产要素参与分配,为数据赋予了新的历史使命。为贯彻国家大数据战略,更好地释放工业数据对质量变革、效率变革、动力变革的驱动作用,工业和信息化部办公厅印发了《工业数据分类分级指南(试行)》(以下简称《指南》),指导企业提升数据管理能力,加速数字化转型,助力制造业高质量发展。
  
  一、迎机遇,工业数据成为驱动产业创新发展的主引擎
  
  (一)工业数据是数字化转型升级的必然产物
  
  近年来,我国两化深度融合步伐明显加快,在需求分析、研发设计、生产制造、运行维护直至报废回收的产品全生命周期中,以数据为纽带逐渐实现物理世界和信息世界的无缝链接,数据量呈爆炸式增长。随着服务型制造、共享制造等新业态新模式的涌现,智能化设计、网络化协同制造、个性化定制服务等场景将积累更加丰富的工业数据资源。
  
  (二)工业数据资源不断释放蕴藏的巨大能量
  
  大数据技术在工业领域用户需求精准分析、生产过程改进优化、营销管理智能决策等方面发挥的作用日益显现,工业数据成为新的生产要素资源。数据流带动技术流、资金流、人才流、物资流,提升资源优化配置能力,促进全要素生产率提升,成为带动业务创新发展、推动供给侧结构性改革、实现包容性增长和可持续发展的重要驱动力。
  
  (三)工业互联网平台加速实现海量数据汇聚
  
  工业互联网平台作为工业全要素、全产业链、全价值链连接的枢纽,全面采集产品设计、生产工艺、设备运行、运营管理等海量工业数据资源,实现数据的有效整合、深度分析以及快速处理。我国工业互联网平台已进入发展快车道,赋能效用日益显现,为进一步挖掘工业数据价值、重塑生产制造和服务体系提供支撑,给经济创新发展注入了新动能。
  
  二、促管理,分类分级是释放工业数据潜能的必由路径
  
  (一)工业数据具有复杂性差异性特征
  
  从数据形态看,种类繁多、价值不一。复杂多样的业务场景导致工业数据存在时序、非时序、结构化、非结构化等多种形式,承载信息、应用领域、重要程度等各不相同,实时性、连续性、稳定性需求差异较大。从数据流向看,路径复杂、主体多样。工业数据在企业内部研发、生产、运维、管理等环节之间互通,在上下游企业间、平台间流转,涉及设备厂商、工业企业、平台企业、服务商等相关方,加大了流向跟踪、风险定位、责任追溯等数据管理难度。
  
  (二)分类分级是工业数据管理的基础
  
  区分工业数据的类型和重要级别是部署细粒度、层次化数据管理措施,促进数据充分利用、有序流动和安全共享的前提。一方面,有利于明确差异化数据管理要求,引导企业建立工业数据管理机制,按类逐级排查管理风险、统筹部署防护策略、合理分配资源,切实提升数据管理水平。另一方面,有利于确定不同数据的共享范围,在遵循“最小知情原则”的前提下打破信息孤岛,促进跨企业、跨行业、跨区域的工业数据关联分析与深度挖掘,加快工业生产智能转型步伐。
  
  (三)贯彻落实分类分级管理相关要求
  
  2015年,国务院发布《促进大数据发展行动纲要》,要求建立数据分类目录等标准规范体系。2016年,工业和信息化部印发《大数据产业发展规划(2016-2020年)》,部署了开展数据资源分类、开放共享等基础通用标准研制的重点任务。同年印发的《工业控制系统信息安全防护指南》提出应根据风险评估结果对数据信息进行分级分类管理。2018年国标委发布《数据管理能力成熟度评估模型》(GB/T 36073-2018,以下简称DCMM),将数据分类分级作为数据管理能力第2级(受管理级)至第5级(优化级)的基本要求。
  
  三、重实践,积极稳妥提升指南内容的科学性与合理性
  
  (一)坚持问题导向、目标导向、结果导向
  
  工业数据分类分级是一项较为复杂的系统性工作。在《指南》编制过程中,我们组织国家工业信息安全发展研究中心、中国电子技术标准化研究院等单位深入研究工业数据的内涵与特征,广泛调研数据管理突出问题和迫切需求,多次与地方工业和信息化主管部门、行业主管部门、领域专家及企业代表研讨,以可操作、可实施为目标,以实践效果为牵引,提出基于数据业务属性的分类分级管理方法。
  
  (二)坚持试验验证、边试边改、逐步完善
  
  《指南》初稿完成后,在江苏、广东、四川、江西4个地区和钢铁、烟草2个行业开展了工业数据分类分级试验验证,赴14家企业对近600类工业数据进行定级分析。通过深入企业现场逐条检验《指南》主要内容,不断总结经验、迭代优化,在分类分级方法设计方面注重兼顾科学性和可操作性,在颗粒度把握方面尽量平衡全局通用性、行业灵活性和横向可扩展性,最终形成了试行版本。
  
  四、抓落实,推动工业数据分类分级管理走向实践深耕
  
  (一)组织宣贯培训
  
  面向地方工业和信息化主管部门、工业企业和工业互联网平台企业等,详细解读和宣贯《指南》内容,结合前期试验验证成果,就工业数据分类分级方法、工作流程、管理和防护要点等进行培训,普及工业数据管理的先进知识经验,为《指南》的落地实施奠定基础。
  
  (二)推动标准研制
  
  进一步细化《指南》内容,加快推进工业数据分类分级管理相关配套标准的立项研制、送审报批等工作,与DCMM形成互为补充、相互衔接的国家标准体系,引导企业对标诊断与行业最佳实践之间的差距,通过数据防护技术应用、管理流程优化、组织体系变革等方式,实现数据管理能力跃升。
  
  (三)开展试点示范
  
  鼓励有条件的地方和行业开展工业数据分类分级试点示范,按照边试点、边总结、边推广的思路,探索形成可复制、可推广的实施路径和模式,引领带动行业内、区域内企业落实工业数据管理主体责任。根据试点结果进一步完善《指南》内容,视情择期修订。

第三十四届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:chenjian

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。