文章针对“日活激增”“产品每日打开频率增加”“内容评论量增加”“人均浏览帖子数量增加”四个常见的数据变化,阐述由于数据上涨而带来的常见误区,希望对您有所启发。
随着互联网的快速发展,具有产品自活跃能力高、用户粘性强等优势的UGC软件,也在如火如荼的发展,目前井喷式的发展,让市场进入红海阶段,想要在众多同质化严重的软件中脱颖而出,运营的作用愈发明显。
今天让我们来看下在运营UGC产品时,容易出现的几大常见误区,一些软件看似各项数据蓬勃发展最终却因陷入数据的误区盲目乐观,最终昙花一现,本文希望或多或少的帮助各位少踩雷。
一、日活激增
日活这一核心数据,时时刻刻牵动着运营人的心,日活的增加当然是每个人都希望看到的,但如果某一段时间日活突然暴涨,那就一定要小心了,因为每一项数据的大幅变化,其背后一定有变化原因,可能是因为某一热点事件的带动(例如百万答题玩法的带动),也有可能是用户群体的回归(超级课程表这种用户群体身份明确的产品,在开学季这一时间节点出现日活暴增)。
日活的激增不一定是一件绝对意义上的好事,可能原因如下几点:
(1)功能无法满足
如果是运营时间不长的产品,产品的完善度不够,产品功能还停留在满足用户的基础需求层面,无法满足大量用户的各种需求,大量非种子用户的进入,可能会要求很多功能的增加,一方面无法留住这批新用户,另一方面打乱产品本身的计划。
(2)社区氛围被打乱
社区例如早期的知乎,社区内的氛围基本围绕“互联网”“创业”等高端话题内容,如果此时任由大量用户进入,发布或回答与互联网无关的内容,会冲散知乎的精英氛围与沉淀的精品内容,达到适得其反的目的。
(3)用户生态体系不完善
用户怀着一种好奇的心情进入社区,发现没有足够丰富与优秀的内容供自己浏览,同时社区内用户也没有紧密联系,自己在此处的存在感很低,不清楚该做什么。由于大量新用户进入,让产品很难针对这批用户建立完整的用户生态体系,最终新用户来的快走得也快。
而对于无法找到日活激增原因的公司,打击则更为严重,如同一颗隐藏的糖衣炸弹,让躺在蛋糕上的社区随时有崩盘危险。
中小公司在面对这种情况时,一定要及时找到激增原因,同时要想办法提高留存,将这批用户留住,如果新用户群体与自己产品的核心用户差别太大,建议对于新用户进行一定取舍。
二、产品每日打开频率增加
产品每日打开频率越高,代表用户每天打开产品的次数越多,根据app用户的生命周期来分析,用户从安装、下载、使用到卸载一款app应用,大概会经历4个阶段:忠诚、活跃、消极、怠惰。如下图所示:
将打开频次这一数据与产品类型紧密结合,能够看出用户群体的行为变化,甚至是心理变化。
因此打开频率基本反映用户与产品之间的关系,但此处要结合一个最主要的点来看这个问题:产品类型。
正所谓数据尤如双刃剑一样,没有绝对的好也没有绝对的坏,数据的变化体现了用户群体的变化,此处我们以社交软件为例。
产品类型决定用户每天打开频率处在哪一范围合适,例如陌生人社交的软件“探探”“陌陌”,在某一时间段内,产品每日打开频率增加,可能代表产品使用频次高、利用率高,但也可能代表用户在产品内无法找到有意思的内容,无法长时间停留这就背离了初衷。
UGC类产品也是如此,频繁的打开可能是因为UGC内容不够丰富,或者推荐的内容不够迎合用户喜好,也有可能是用户在社区内的归属感不够,让用户频繁在社区中游走。
三、内容评论量增加
内容评论通常是各位媒体人、内容运营人非常关注的点,通常认为评论量越多内容越优秀,但实则不然,这里对于内容评论量有一个普遍误区:内容评论量实际上仅代表用户对内容的关注程度
内容评论量/内容浏览的UV=用户对内容的关注程度
内容评论中包含正面、负面、建议性等多种方面,单纯看评论数量而忽视评论内容,会盲目乐观内容质量,举例来说:
如果产品中的某篇UGC精品内容,存在较大的逻辑漏洞,其他用户看到后进行大量抨击,此时负面评论的大量增多,会导致评论量大量增加。
或者某个UGC的精品内容,因为其本身争议性比较大,主观程度比较高的内容,也会让评论增加,此时需要注意评论量是由内容本身带来,还是产品带来的。
归根结底,在内容评论量增加时,我们首先要看内容评论中褒贬意见的占比,其次需要看内容评论增加,是由于内容本身所带来,还是受产品整体影响。
四、人均浏览帖子数量增加
人均浏览帖子数量顾名思义,代表每名用户每天平均看多少篇内容,数量越多代表用户在软件中浏览的数量越多,但人均浏览帖子数量越来越多真的是好事么?
个人认为不一定,因为单纯看人均浏览帖子的数量,主要有以下几种成因:
帖子内容质量上升,优质内容增加,用户兴趣增加。
内容推荐更加完善,用户找到更多自己喜欢的内容。
不符合用户需求的内容增加,用户在频繁寻找适合自己的内容,走马观花式的浏览。
那么我们如何确定呢,此时我们应该与用户在产品的停留时间和内容长度结合:
首先应该确认每篇内容的大致浏览时间,假设在一个UGC社区中,每篇内容的篇幅在1000字左右,用户平均看完一篇内容的时间为5分钟;然后我们找到已知的用户在产品的停留时间,假设为30分钟,就可以确定出,理论上每名用户每天平均会看6篇内容。
这时将实际人均浏览帖子数量与理论人均浏览帖子数量对比。由于产品停留时间不变:
如果实际浏览帖子数>正常浏览帖子数,则说明每名用户在内容上的浏览并未达到5分钟,用户在浏览内容中途退出,选择浏览其他内容,说明内容质量下降或推荐不符合用户喜好。
如果实际浏览帖子数<正常浏览帖子数,则说明每名用户在内容上的浏览超过5分钟,用户在浏览每篇内容的时间增加,说明用户对于内容的关注程度更高,或者内容晦涩难懂,让用户理解成本增加。
五、总结
UGC类产品依赖于用户的产出与黏性,大家在产品数据发生变化时,无论是数据激增还是暴跌,都不要太过乐观或悲观,迅速找到数据变化的原因,并找到应对方法,才能以不变应万变。
有任何疑问欢迎各位在下方评论区探讨,祝愿大家工作顺利!
第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:content
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。