大数据是创业者弯道超车BAT最大机遇?

2015-09-08 09:57:11  来源:中国大数据

摘要: 国家标准委正在着手制定首批共十项大数据标准,分别是大数据术语、大数据技术参考模型、数据交易平台交易数据描述、数据交易服务平台通用功能要求。
关键词: 大数据 创业者 BA

    国家标准委正在着手制定首批共十项大数据标准,分别是大数据术语、大数据技术参考模型、数据交易平台交易数据描述、数据交易服务平台通用功能要求、数据能力成熟度评价模型、多媒体数据语义描述要求、科学数据引用、数据溯源描述模型、数据质量评价指标和通用数据导入接口规范。


    大数据企业如何发展,市场正在做出自己的选择。


    8月末,北京某酒店的一场大数据企业展上,聚集了全国各地的企业。现场展示有随着《江南style》起舞的机器人,有早期科幻电影里走出来的“触摸式数据可视化屏幕”……


    “你们的具体业务是做什么的”、“和大数据有什么关系”……和直观的服装展、美食展不同,大数据行业作为当下的风口新业态,其行业标准、商业模式正在探索中,参展的大数据企业们,以各种可视化的方式,把大数据产业的最新成果展示给观众。这场活动吸引了大批企业和研究人员,其中还包括自费从国外过来学习的教授。


    中国的人口数量,让其成为大数据大国,但却不是生来的大数据强国。国内大数据市场正在经历炒作、探路和实践期。21世纪经济报道记者采访发现,今年的大数据行业聚会,探讨的内容已经从2014年的数据是什么,发展到大数据产业的商业模式怎么做。


    从业务定位到市场开发,从产品生产到服务提供,大数据企业的发展还处于初始阶段。在大数据生态圈里,看上去很美的商业价值,已经吸引了一批创业者,将之视作弯道超车BAT的最大机遇;也有传统企业和行业巨头借势圈地扩张,寄望完成转型和整合。


    有学界和业界人士预测,大数据已经从概念炒作走向了稳步发展时期。另外,8月份出台的促进大数据产业发展行动纲要,系列鼓励和规范政策正在密集出台中。在大数据这个具体政策和标准近乎空白,正在野蛮生长的大数据产业生态链中,21世纪经济报道记者通过采访大数据产业生态链上的各类企业,摸底大数据产业的商业化落地进程。


    应用行业参差不齐


    “扫码送牛奶”、“扫码送雨伞”……进入2015年,从中关村地铁站出来,簇拥围住你的人群,不再给你发传单,而是各类APP扫码推广。APP推广的大量聚集,让这里被戏称做“扫码一条街”。


    在大数据被各方合力推上风口的当下,这些APP推广工作人员会介绍,这款应用是基于某领域海量数据库的处理和分析的产品。在很多新上线APP的宣传里,“数据为王”,“企业对大数据的态度决定未来的高度”,类似的说法越发常见。


    事实上,这些企业是不是纯粹的大数据企业尚有争议。一部分人认为,严格意义上来说他们只是通过互联网+的方式应用大数据,是大数据生态链上最终的消费者,是大数据得以应用的主要场景,而不是纯粹的大数据从业企业。


    抛开争论,这些大数据应用企业,对大数据产业发展的重要性毋庸置疑。“企业对数据的应用,是大数据行业发展的引擎”,有专家表示。


    21世纪经济报道记者发现,在每一次关于大数据相关的活动中,大数据的商业应用,是最受关注的板块。在8月26日的中国国际大数据大会开幕论坛上,关于大数据的商业应用,学界和业界即产生了两种完全对立的观点。


    北京大学鄂维南院士提到:“现在的数据分析公司是风起云涌,我把它说成是小锅炉战场,想当年大炼钢铁的时候,就是自己在家里就建了锅炉就炼。”鄂维南称,现在的确什么人都可以做,没有什么技术含量。


    鄂维南还提到,数据交易存在经济学上的悖论,数据服务作为一个业务模式,它的商业模式现在没有真正被认可,数据通过什么方式赚钱,前景不是那么清楚。


    晶赞科技董事长汤奇峰在中国国际大数据大会上发言称,大数据交易并不存在经济学上的悖论。我国企业对大数据应用的现状基本都是初期的状态。应用的主要形式还是,基于大数据得到的商业洞悉,业务推荐和智能获客等三个领域。其中的典型就是个性化推荐和智能广告。


    汤其峰在接受21世纪经济报道记者采访时表示,大数据的商业模式体现在很多方面,大数据价值在交易和流通的过程中体现,并且会发生聚变效应,实现边际效应递增。


    21世纪经济报道记者了解到,目前国内对于大数据应用,发展较好的还是以大企业为主,比如BAT、滴滴快的、Uber等互联网企业。不管是对外数据源采集,还是企业内部的数据资产管理,其互联网企业基因,以及自身的资本优势,使得他们在大数据的应用上同样处于领先的态势。


    同时,由于这些拥有大量数据资源的企业,在分析挖掘数据形成应用的同时,放弃直接依靠出售数据获利,而选择对外提供数据服务和分析结果,为应用类企业的决策和东西提供了便利条件。这也是应用类的数据企业或产品数量较大,占到了行业总数的三分之一的重要原因。


    而对于部分中小企业而言,资金缺乏和技术难题导致数据获取难,缺乏数据资产管理意识,其对大数据的使用,仍在探路中。


    另外,我国的大数据应用领域分布仍然不够全面,相关企业主要集中在互联网、市场营销、电信、金融领域,而政府公共服务、农业类应用,发展还在原始阶段,近期个别企业还不时爆出数据造假的传闻。同时,数据应用的方式单一,思路狭窄,一些企业盲目学习国外的数据应用模式,也是大数据应用企业发展的一大短板。


    抢占数据分析高地


    如果说大数据的应用,是大数据产业的商业价值终端,那么大数据行业公认的大数据分析,将会是大数据产业的核心,是大数据能够点石成金的关键。


    这样的判断是基于大数据的特性。数据本身不产生价值,当数据经过挖掘、归类和分析,能够给企业决策提供帮助之后,才具有价值。


    数据堂公司今年发布了一份《大数据产业调研及分析报告》,其中将大数据分析工作归类为商业分析、语音识别、图像分析、实时处理、空间分析、基因分析、用户分析、日志分析,和数据可视化等九个种类。目前,国内在各个领域都已出现了一批相关大数据企业。


    与上述横向划分不同,另一些看法则偏向将大数据分析按商业价值的高低进行区分。前LinkedIn商业分析部总监,GrowingIO的创始人张溪梦介绍说,在数据分析发展更早的美国,数据分析区块已经按商业价值从低到高地细分为数据采集、大数据架构、响应性分析,诊断性分析、战略性分析、预测性分析和全自动分析。而一旦做到数据分析全自动化,将会利用10%的时间,创造出这个行业90%的价值。


    在美国数据分析领域工作十余年的张溪梦认为,“数据分析前端过程复杂,分析昂贵,导致在过去若干年里,数据科学家90%的时间和工作都是进行数据清洗、整理、传输和存储,但真正产生价值的是剩下的10%。我们必须要利用各种先进技术,把金字塔底部做得非常狭窄,把以往很缓慢的流程缩短甚至透明化。”


    21世纪经济报道记者获悉,目前国内的数据分析产品,在与国外产品的竞争中仍处劣势。以日志搜索系统为例,虽然国内已有自主研发的日志实时搜索分析引擎面世,但市场使用的主流还是HADOOP、STORM和SPARK等国外开放计算框架下的产品,有部分互联网和金融企业则选择了SPLUNK等第三代日志搜索软件包,这同样也是美国开发的大数据工具。


    然而国内企业并非毫无竞争力,日志搜索分析引擎“日志易”的创始人兼CEO陈军介绍,这些国外数据搜索处理系统价格非常昂贵,同时由于之前的“棱镜门”事件,国外系统的软件后门也令一些国内的企业尤其是金融企业担忧。


    人才短缺是限制国内大数据分析企业发展的另一大主因。《哈佛商业评论》曾将数据分析师称为“21世纪最性感的职业”,当下也是稀缺和抢手的职业。鄂维南院士介绍,我国大数据发展最大的优势是庞大的市场,最大的劣势是缺乏人才,“我们国家目前没有建立起非常好的培养大数据人才的机制,在大数据涉及的统计、机械学习等这些领域相比而言更加弱势。”


    滴滴快的CEO程维在讲述如何到硅谷挖人时提到,人才是最大的瓶颈,中国没有那么多的大数据和机器算法的科学家,后来发现硅谷一线的互联网企业,像Uber、Facebook里面20%的工程师是华人。“我们派了CTO和一个代表团在硅谷把他们请到一起交流。”程维说。


    鄂维南认为,大数据分析人才的缺乏,当下数据人才市场,不仅有国内和国外的竞争,学术界与企业界也在竞争。要想弥补人才短缺,在大数据领域取得领先地位,需要建立一个开放的,既可以做科研也可以产业化做市场的国际标准的研究平台,或是解决之道。


    数据平台期待全覆盖


    相对大数据分析企业的专业和专一定位,产业覆盖面广的大数据平台类企业,则是在国际大数据大会的企业展厅中,占比最高的行业类型。


    一位参展的大数据平台商人告诉记者,“大数据平台会是大数据行业的基石和中坚。”据了解,阿里,百度,华为等企业都早已布局大数据平台,阿里云更是从2010年就对外开放了其在云计算领域的技术服务。


    然而,大数据平台的准确定义至今仍未有定论。广州工业大学大数据战略研究院副院长谢卫红告诉记者,与数据分析、数据应用不同,大数据平台是随着大数据产业兴起而诞生的新兴事物,目前还没有官方定义。大数据平台的数据规模和具体功用,都还有待界定。


    21世纪经济报道记者采访发现,当下市面上所谓的平台主要有两类,一类是通过各种渠道搜集、整理数据,并为数据应用企业提供有偿数据的数据交易类平台;一类是为了处理企业内部生产运营中产生的海量数据,以存储、运算、展现这些数据为目的的数据处理类平台,其工作内容包括了数据的输入、导入、分析以及加工。


    在整个大数据生态中,大数据平台处于行业中上游位置,是进行数据分析和应用的基础。其中,大数据交易平台由于数据权属和交易规则尚未制定的缘故,发展相对滞后,基本都是2014年后开始投入运营;大数据处理平台则开发较早,商业化程度相对较高。


    目前,大数据处理平台的服务对象以企业为主。除了一些中小型的创业公司,一些大公司也相继推出自己的相关业务,如华为的FusionInsight,和海尔的SCRM(社交化客户关系管理)平台。


    其中,大多数平台主要解决企业特别是大企业内部的数据孤岛问题,将CRM(客户关系管理)、ERP(企业资源计划)、OA(办公自动系统)等业务系统打通,实现跨行业、跨部门的数据分析与整合,以协助企业的运营、管理和决策。


    在这部分数据处理平台中,包括依靠技术模块的变化,提供不同行业平台服务的平台,和针对专门行业的平台;后者数量较少,在交通、建筑和媒体行业都有较为典型的专业化平台出现。


    此外,数据处理平台中还有一类针对特定业务系统的大数据平台,比如海尔的SCRM,就是专门的社交化客户关系管理的数据平台。


    由于大数据平台在大数据产业中的基础性地位,国内的大数据处理平台企业数量相对较多。对其业务性能和服务的评价体系也相应较为完整。


    大数据处理平台供应商,九章云极的CEO方磊称,数据集成能力、存储和计算能力、分析能力、部署能力、运维能力、开发定制能力,和管理协调能力等七大方面的能力,会是厂商在挑选平台服务时的主要尺度和标准。其中前六者形成数据资源挖掘和计算能力闭环,管理协调能力则影响着平台的工作效率。


    然而需求方的要求似乎并没有得到满足。方磊向21世纪经济报道记者透露,在他们与平台需求企业的对接中,“端到端”、在数据处理平台上直接实现数据分析的要求,越来越多。需求方,往往也是数据应用企业,希望平台能够提供一体化、一键式的自动化数据服务。


    在商业价值开放较好的大数据处理平台区块,需求正加速推动着产品的转型。“未来大数据平台和大数据分析的融合会是一种趋势,大数据分析企业会向下渗透到数据收集和整理,大数据平台企业会往数据分析上发展,这种扩张是必然的。”方磊说。


    不过在当下的技术和人才条件下,大多数大数据处理平台,还只能实现基础性的数据分析,和简单的可视化呈现。清华大学数据科学研究院执行副院长韩亦舜,在接受21世纪经济报道记者采访时表示,目前一键式的自动化数据服务,只能在一些数据结构单一的特定领域实现。对于多源异构的数据,想要实现一键式自动化服务,还有很长的路要走。未来的数据平台,实现针对不同行业领域的垂直细分后,可能会在某些行业率先实现突破。


    十项大数据标准制定中


    在业界构想中的完整大数据生态链里,不同人的分类不同,大数据企业的类型也很多。其中必须要提的,就是大数据产业最基础的工作——数据源。一些数据源企业和数据存储系统企业,都已在市场上占据了一席之地。


    目前,由于数据流通尚未形成规模,国内数据源区块中的平台比例较为明显。作为当下仅有的几家号称专门从事数据源业务的公司之一,数据堂搜集线下数据,开展线上业务的市场定位和数据众包、采集加工流通三位一体的“数据银行”的业务模式较有代表性。


    然而,由于行业规则和行业标准缺失、数据的权属不明,当下大量的数据交易是不规范且有争议的。国务院发展研究中心技术经济部副部长田杰棠称,数据交易的前提是产权要清晰,尤其是个人在线活动产生的数据,其产权到底属于个人还是企业,对于整个产业的发展和数据资源的配置都有很大影响。


    数据源企业的发展必然伴随着数据交易,不规范交易、个人隐私界定模糊和数据产权划分不清晰带来的安全担忧,是造成国内专门从事数据源工作的企业数量稀缺的重要原因。


    与数据源区块不同,在大数据存储区块,核心技术的缺失成为了最大的问题。一家参展的厦门数据存储系统开发商负责人告诉记者,国内的数据储存企业拥有自主知识产权的很少,特别在硬件上的技术落后国外更多。


    不过这样的情况正在好转,韩亦舜告诉21世纪经济报道记者,随着近年来硬件开源的兴起,国内在数据存储领域实现自主可控的速度有望加快。


    另外,国内大数据标准化进程也在逐步推进中,困扰大数据行业的瓶颈或将迎来部分解决。


    据中国电子信息标准化研究院技术总监王立建介绍,国家标准委正在着手制定首批共十项大数据标准,分别是大数据术语、大数据技术参考模型、数据交易平台交易数据描述、数据交易服务平台通用功能要求、数据能力成熟度评价模型、多媒体数据语义描述要求、科学数据引用、数据溯源描述模型、数据质量评价指标和通用数据导入接口规范。


    其中前四项处在征求意见稿状态,中间四项已完成草案,最后两项还在草案大纲阶段。另外,大数据标准体系框架也已在征求意见稿阶段。


    随着政策顶层设计的越发清晰和行业标准的逐渐形成,对于大数据企业的未来发展方向,各方也有了不同的判断。


    一些大数据商人认为,长远看单纯从事数据生态某一环节的企业,都存在重大转型压力,特别是底层的数据搜集和挖掘企业,针对不同行业领域的大数据企业将会整合该领域的数据收集、储存和分析业务。


    而另一些大数据交易平台的支持者则认为,大数据行业未来会围绕大数据交易平台,形成纵向细分的垂直行业生态,以及横向产业链精细化分工的网格状发展态势与布局。


    来自业内的预测更为乐观。阿里研究院数据经济研究中心秘书长潘永花表示,根据2014年的Gartner新兴技术曲线显示,大数据已经从炒作高峰,进入5到10年的稳步发展期,2015年大数据已经成为主流技术。
 


第三十四届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:tqy

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。