首页 > 推荐 > 正文

走进大数据之拓扑数据分析方法

2017-01-23 15:19:19  来源:36大数据

摘要:拓扑数据分析(TDA),顾名思义,就是把拓扑学与数据分析结合的一种分析方法,用于深入研究大数据中潜藏的有价值的关系。
关键词: 拓扑 大数据
  拓扑数据分析(TDA),顾名思义,就是把拓扑学与数据分析结合的一种分析方法,用于深入研究大数据中潜藏的有价值的关系。
 
大数据
 
  相比于主成分分析、聚类分析这些常用的方法,TDA不仅可以有效地捕捉高维数据空间的拓扑信息,而且擅长发现一些用传统方法无法发现的小分类。这种方法也因此曾在基因与癌症研究领域大显身手。
 
  1.什么是拓扑数据分析
 
  拓扑学研究的是一些特殊的几何性质,这些性质在图形连续改变形状后还能继续保持不变,称为“拓扑性质”。而在复杂的高维数据内部也存在着类似的结构性质,我们可以形象地称之为数据的形状(特征)。
 
  和通常研究的成对关系相比,这种相互关系的形状之中可能潜藏了巨大的研究价值。要理解数据的形状,就必须求助于拓扑学。TDA所做的就是抽取这种形状并进行分析。
 
  那么到底如何来刻画数据的形状呢?下图是一个简单的例子:
 
 大数据
 
  左边是一只手的采样数据点,宏观看来像一只手。右边则是经过拓扑数据分析得到的图,有点像一只手的骨架。从左边到右边,就是一次形状重构的过程。这种重构用了很少量的点和边去刻画原始数据集,同时保留了原始数据的基本特征。
 
  2.拓扑数据分析的三个要点
 
  1)TDA的输入可以是一个距离矩阵,表示任意两数据点之间的距离。
 
  它研究的是与坐标无关的形状,完全不受坐标的限制。这也意味着拓扑形状的构建依赖于距离函数的定义,或者说相似度概念的定义。坐标无关的特性,使得TDA可以整合来自不同平台的数据,尽管这些数据的结构不太一样,你只需要给出合理的距离函数。这是TDA的一个优点,通用性。
 
  举个例子,TDA在癌症分析领域的成功,这种通用性是一个重要原因。因为不同癌症数据集的指标、结构都不尽相同,而TDA可以轻松整合。
 
  2)TDA研究的数据形状,可以容忍数据小范围的变形与失真。
 
  想象在一块橡皮上写了一个字母”A”,你用力挤压拉扯这块橡皮,字母”A”虽然有点扭曲变形,但是“一个三角形带两个脚”这样的基本特征仍然存在。从上面“手”的例子也可以看出,TDA对小误差的容忍度很大。
 
  3)如果我们要粗略的描绘一个湖泊轮廓,最简洁的就是使用一个多边形。
 
  拓扑处理的是抽象的形状,最典型的例子就是用六边形来表示圆,这只需要用到6个点和6条边。
 
  TDA使用这种形式压缩数据,用有限的点和边来表示大量的数据,并且保留了数据重要的特征。
 
  3.拓扑数据分析的主要步骤
 
  用一个滤波函数对每个数据点计算一个滤波值。这个滤波函数可以是数据矩阵的线性投影,比如PCA。也可以是距离矩阵的密度估计或者中心度指标,比如L-infinity(L-infinity的取值是该点到离它最远的点的距离,是一个中心度指标)。
 
  数据点按照其滤波值,从小到大被分到不同的滤波值区间里。参照下图中“手”被切成等宽的块。但需要注意的是,相邻的滤波值区间设置有一定的重叠区域,也就是重叠区域的点同时属于两个区间(这一点很重要)。
 
  对每个区间里的数据分别做聚类。
 
  把上一步骤中各区间聚类的得到的小类放在一起,每一个小类用一个大小不同的圆表示。若两个类之间存在相同的原始数据点(这就是区间需要相互重叠的原因),则在它们之间加上一条边。
 
  对上述圆和边组成的图形施加一层力学布局,让其达到平衡,就得到最终的“数据图形”。
 
  下图是一个简单的示意图,便于理解:
 
  大数据
大数据
 
  4.案例:ayasdi公司关于NBA球员的研究
 
  有一份关于NBA球员的数据集,这份数据集编码了球员在场上表现的各个方面,包括篮板、助攻、失误、抢断、封锁、犯规、得分等各项指标的每分钟频率。对这份数据集进行拓扑化后,得到了下面这张图。

大数据
 
  篮球运动员的位置一般分为控球后卫、得分后卫、小前锋、大前锋、中锋。然而在上图的网络中,我们看到了比传统的五个位置更为精细的结构。比如在网络的左侧,守卫被细分成了三个组,攻击守卫、防守守卫、击球守卫。在网络的中下部我们可以看到三个比较小的块,其中有“NBA全明星”(Allstar NBA) 和“NBA全明星第二梯队”(Allstar NBA 2nd Team)。
 
  “NBA全明星”这个组几乎由NBA历史上最优秀的球员组成,“第二梯队”虽然也都是由全能的优秀球员组成但表现上可能不如全明星组。
 
  有意思的是,在全明星组中还有一些不太知名的球员,这些球员也许就是潜在的未来明星球员。
 
  写在最后
 
  拓扑数据分析作为一种强大的工具,已经开始被广泛的应用。在未来基于TDA的算法肯定会不断的提出和完善。

第三十八届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:pingxiaoli

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。