CIO时代APP微讲座:北京理工大学张华平谈大数据语义分析与应用实践

2017-04-06 15:18:12  来源:CIO时代网

摘要:4月6日,北京理工大学大数据搜索与挖掘实验室主任、副教授张华平在CIO时代APP微讲座栏目作了题为《大数据语义分析与应用实践》的主题分享。
关键词: CIO时代APP 微讲座
\
  4月6日,北京理工大学大数据搜索与挖掘实验室主任、副教授张华平在CIO时代APP微讲座栏目作了题为《大数据语义分析与应用实践》的主题分享,具体从以下四个方面展开:

\

  一、语义:比阿尔法狗更难的事

  大数据的语义分析对人类语言的理解远远难于AlphaGo,如就同样的文字而言,谁都打不过,事实上是完全相反的。从中可以看出,语义理解的困难所在。比如“WEDOCHICKENRIGHT”,真正按照文字的字面理解,这里涉及到很多语言歧义。

\

  上图中构建了自然语言、思维与客观世界的三角关系,我们可以看到,自然语言是人类理解客观世界的必要通道,几乎也是一个唯一通道。

  二、文本大数据挖掘关键技术

\


  从上图中可以看到,大数据更大意义上是非结构化内容理解。具体而言,结构化的大数据分析是利用传统的数据库,包括SPSS、IBM的DB2等这些工具可以很好地解决。但非结构化的内容理解还远远无法做到。

  我们实验室的主要研究内容包括:NLPIR大数据语义挖掘、JZSearch精准搜索引擎、知识本体构建与知识管理。

  实验室历时十五年开发了一个NLPIR的大数据语义分析平台。其核心功能包括以下几个方面:

  搜索类:全文精准检索;

  语言类:新词发现,分词标注,统计分析与术语翻译;关键词提取;

  文档类:文本聚类及热点分析;分类过滤;自动摘要;文档去重;情感分析。

  除此之外,我们还有一个在线演示的平台,以下对平台演示的几个关键功能进行介绍。

\

  上图展示了一个技术,背后都是基于在线演示平台的做的,称之为新词发现的技术,可以看到对一批语料自动计算数据中出现的新的词汇,如认沽权证、金融衍生产品等等。其中有几个参数:词语、词性(一般是名词)、权重(通过信息熵来计算该词对一批语料的重要性)、词频,这里的词频排第一的并不是最高的,因此不适用所谓的高频分析。另外,通过这种方法可以大量识别网络中出现的新的语言及专业词汇,这种方法分别在电力、医院做过实验,可以非常精准地识别各种专业的说法,如药物名称、医学典籍等等。这项技术其实有非常广的用途。

\

  这里展示的技术是汉语分词技术,汉语分词是语义理解中最基础性的工作,到目前为止,这项工作已有十七年的历史,这里可以看到的例子,如识别一个人的名字和单位,还可以看到分词系统自动识别人的名字,包括英文原型等。这项工作已经在全球四十万机构使用,如人们用的华为手机,其中涉及到的语义分析便是使用这项技术,比如短信自动分析时间地点,以及餐饮酒店等。

\

  这里展示的是信息过滤技术,可以看到,这项科技可以在文章中发现色情及偏色情的内容。

\

  这里展示的是文本分类有基于机器学习分类的一项技术。可以看到,我们可将类别编成目录文件夹,里面可以放一百个甚至更多的序列类本,图中展示的是机器自动学习类别特征的过程。

\

  这里展示的是经过机器学习后大数据的方法,用深度学习的方法对常规文本进行自动分类,其中交通类的分类还是比较准确的。

\

  这里是敏感内容自动实时智能扫描的技术,其中变形的识别都是音变,并没有直接提关键词,只利用发音扫描到敏感的内容,这里是语音的智能识别理解技术。其实只要配一个词便可识别各种干扰因素,这样有利于精确打击犯罪,如自动发现赌博,寻找需要的信息,挖掘敏感信息,用户可以通过这种方法得到想要的内容。这项技术的一个特点是智能、速度快,配100万关键词可以做到每秒扫描20兆的文本。

  NLPIR大数据语义分析技术的在线演示几乎支持所有的开发语言,也支持各种各样的平台。

  三、大数据精准语义搜索关键技术

\


  该搜索引擎可以采用自然语言的聊天方式,根据语义的知识图谱将某个人的信息展现出来,如上图所示,最左边会将某个人相关的十年来所有信息做聚合运算。

\

  这是一个时光机技术,我们可以实时计算出每一年的活动、主题,刚才的聚合及每一年的主题,很多词汇都是词典中的内容。值得注意的是,大数据挖掘技术可自动发现某个人的数据关联性。具体原因可以在数据中得到答案。

  四、大数据语义应用实践

  主要介绍以下四个案例:

  1.某大厦电力数据挖掘

  得到的数据情况为:238个房间每一天的用电数据,总共是三百多天,期间工作日是256天,计算其单日用电量。基于这个数据传统的数据聚合、数据基本分类、数据统计曲线等简单工作便略去了。

  这里涉及到的一项工作便是计算空置率,空置率的计算对经济预测,尤其是微观经济的洞察和宏观经济的研判具有很强的现实意义。可以看到,这里空置房间的标准是经过大量数据计算出来的。其实在二三线城市不错的写字楼,其空置率也达到了32%。除此之外,还可以精确预测每个房间的总体用电情况,由此来推导房间中办公的人数。

  2.95598客服挖掘

\


  上图为一年来电网95598投诉分析,其中可以看到全国的分布、南北方的对比及时段的对比,进而挖掘有价值的信息。

  3.国家电网头条

\


  为国家电网打造了一个全媒体个性化智能推荐平台,其中包括全媒体(多位一体、富媒体,如图像、文字、音频、视频、直播等等)、云应用(构建了一个开源平台,所有用户、编辑、审核、管理员及技术间的衔接均采用SaaS服务)、值得一说的是,个性化有所尝试和探索(因时因地因人而变),具体而言,指的是不同的人在不同的地方看到的内容是不同的,这里应用了个性化建模、个性化推荐与群体推荐的方法。

  4.公安某局的案件

\


  这里展示的一年来盗窃案的总体刻画,其中包括很大的数据。具体以串并案的处理为例,如盗窃三轮车的案件,根据案件描述自动从过去的几百万案件中推荐出前十个案件。其中进行了脱敏处理,但这种处理并不影响数据挖掘。这项工作对于安全的公安部门很有价值。

  介绍的一项工作便是诈骗案的语义聚合,诈骗案很多,众所熟知的便是电信诈骗、网络诈骗等,但随着打击的增加已呈现下降的态势。真正有危害的是还不为公众所认知的诈骗案件,值得注意的是利用目的进行诈骗的手法。这种技术适合于对海量数据进行聚合,辅助我们进行综合的研判。

\

  对同一类案件的人物、地点做聚合,构建一个如上图所示的犯罪地图。犯罪地图分为两种,一种是指犯罪发生地点的地图,一种是犯罪嫌疑人籍贯地图,帮助我们发现重大线索。

第三十五届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:张华平

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。